1
|
Baba T, Miyahara C, Yamanaka A, Kitazawa C. Revealing the cells fated to form the cell mass in embryos of temnopleurid sea urchins. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:254-269. [PMID: 35255188 DOI: 10.1002/jez.b.23126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Larvae of temnopleurid sea urchins form a cell mass (CM) instead of an amniotic cavity on the left side at the early developmental stage for formation of the adult rudiment. However, the cell lineage and the mechanisms that form the CM are still unknown. We analyzed the potential to form a CM in partial embryos resulting from microsurgeries, using two temnopleurid species, Mespilia globulus (L.) and Temnopleurus toreumaticus (Leske). CM formation was completed 28-34 h after fertilization at 24°C, corresponding to the period from the late prism to the two-armed pluteus larval stages in both species. In the case of specimens dissected horizontally during the mesenchyme blastula to prism stages, the CM was formed in partial embryos containing enough of the an2 region, a part of the precursor cells that differentiate the ectoderm. The proportion of specimens with a CM was higher in T. toreumaticus than in M. globulus. Additionally, all larvae derived from half embryos obtained from dissection along the animal-vegetal axis at the mesenchyme blastula stage formed the CM. Transplantation of a stained animal or vegetal hemisphere at the 16-cell stage into a nonstained vegetal or animal embryo indicated that the CM derives from the animal half. Exogastrulae vegetalized by lithium chloride treatment did not form the CM. These results indicate that the CM formation is dependent not only on the an2 region but also on signals from the vegetal region after the mesenchyme blastula stage.
Collapse
Affiliation(s)
- Tomomi Baba
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Miyahara
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - Akira Yamanaka
- Department of Biology & Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
- Department of Biology, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Chisato Kitazawa
- Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
- Social System Analysis, The Graduate School of East Asian Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
2
|
Pieplow A, Dastaw M, Sakuma T, Sakamoto N, Yamamoto T, Yajima M, Oulhen N, Wessel GM. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Dev Biol 2021; 472:85-97. [PMID: 33482173 PMCID: PMC7956150 DOI: 10.1016/j.ydbio.2021.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
We seek to manipulate gene function here through CRISPR-Cas9 editing of cis-regulatory sequences, rather than the more typical mutation of coding regions. This approach would minimize secondary effects of cellular responses to nonsense mediated decay pathways or to mutant protein products by premature stops. This strategy also allows for reducing gene activity in cases where a complete gene knockout would result in lethality, and it can be applied to the rapid identification of key regulatory sites essential for gene expression. We tested this strategy here with genes of known function as a proof of concept, and then applied it to examine the upstream genomic region of the germline gene Nanos2 in the sea urchin, Strongylocentrotus purpuratus. We first used CRISPR-Cas9 to target established genomic cis-regulatory regions of the skeletogenic cell transcription factor, Alx1, and the TGF-β signaling ligand, Nodal, which produce obvious developmental defects when altered in sea urchin embryos. Importantly, mutation of cis-activator sites (Alx1) and cis-repressor sites (Nodal) result in the predicted decreased and increased transcriptional output, respectively. Upon identification of efficient gRNAs by genomic mutations, we then used the same validated gRNAs to target a deadCas9-VP64 transcriptional activator to increase Nodal transcription directly. Finally, we paired these new methodologies with a more traditional, GFP reporter construct approach to further our understanding of the transcriptional regulation of Nanos2, a key gene required for germ cell identity in S. purpuratus. With a series of reporter assays, upstream Cas9-promoter targeted mutagenesis, coupled with qPCR and in situ RNA hybridization, we concluded that the promoter of Nanos2 drives strong mRNA expression in the sea urchin embryo, indicating that its primordial germ cell (PGC)-specific restriction may rely instead on post-transcriptional regulation. Overall, we present a proof-of-principle tool-kit of Cas9-mediated manipulations of promoter regions that should be applicable in most cells and embryos for which CRISPR-Cas9 is employed.
Collapse
Affiliation(s)
- Alice Pieplow
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Meseret Dastaw
- Ethiopian Biotechnology Institute, Addis Ababa University, NBH1, 4killo King George VI St, Addis Ababa, Ethiopia
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Naoaki Sakamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
3
|
Byrne M, Koop D, Strbenac D, Cisternas P, Yang JYH, Davidson PL, Wray G. Transcriptomic analysis of Nodal - and BMP- associated genes during development to the juvenile seastar in Parvulastra exigua (Asterinidae). Mar Genomics 2021; 59:100857. [PMID: 33676872 DOI: 10.1016/j.margen.2021.100857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
The molecular mechanisms underlying development of the pentameral body of adult echinoderms are poorly understood but are important to solve with respect to evolution of a unique body plan that contrasts with the bilateral body plan of other deuterostomes. As Nodal and BMP2/4 signalling is involved in axis formation in larvae and development of the echinoderm body plan, we used the developmental transcriptome generated for the asterinid seastar Parvulastra exigua to investigate the temporal expression patterns of Nodal and BMP2/4 genes from the embryo and across metamorphosis to the juvenile. For echinoderms, the Asteroidea represents the basal-type body architecture with a distinct (separated) ray structure. Parvulastra exigua has lecithotrophic development forming the juvenile soon after gastrulation providing ready access to the developing adult stage. We identified 39 genes associated with the Nodal and BMP2/4 network in the P. exigua developmental transcriptome. Clustering analysis of these genes resulted in 6 clusters with similar temporal expression patterns across development. A co-expression analysis revealed genes that have similar expression profiles as Nodal and BMP2/4. These results indicated genes that may have a regulatory relationship in patterning morphogenesis of the juvenile seastar. Developmental RNA-seq analyses of Parvulastra exigua show changes in Nodal and BMP2/4 signalling genes across the metamorphic transition. We provide the foundation for detailed analyses of this cascade in the evolution of the unusual pentameral echinoderm body and its deuterostome affinities.
Collapse
Affiliation(s)
- Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Demian Koop
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Phillip L Davidson
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Gregory Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
4
|
Li Y, Omori A, Flores RL, Satterfield S, Nguyen C, Ota T, Tsurugaya T, Ikuta T, Ikeo K, Kikuchi M, Leong JCK, Reich A, Hao M, Wan W, Dong Y, Ren Y, Zhang S, Zeng T, Uesaka M, Uchida Y, Li X, Shibata TF, Bino T, Ogawa K, Shigenobu S, Kondo M, Wang F, Chen L, Wessel G, Saiga H, Cameron RA, Livingston B, Bradham C, Wang W, Irie N. Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Commun Biol 2020; 3:371. [PMID: 32651448 PMCID: PMC7351957 DOI: 10.1038/s42003-020-1091-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Echinoderms are an exceptional group of bilaterians that develop pentameral adult symmetry from a bilaterally symmetric larva. However, the genetic basis in evolution and development of this unique transformation remains to be clarified. Here we report newly sequenced genomes, developmental transcriptomes, and proteomes of diverse echinoderms including the green sea urchin (L. variegatus), a sea cucumber (A. japonicus), and with particular emphasis on a sister group of the earliest-diverged echinoderms, the feather star (A. japonica). We learned that the last common ancestor of echinoderms retained a well-organized Hox cluster reminiscent of the hemichordate, and had gene sets involved in endoskeleton development. Further, unlike in other animal groups, the most conserved developmental stages were not at the body plan establishing phase, and genes normally involved in bilaterality appear to function in pentameric axis development. These results enhance our understanding of the divergence of protostomes and deuterostomes almost 500 Mya. Li et al. investigate the evolution and genetic basis of the adult pentameral body plan in echinoderms using genomic, transcriptomic, and proteomic data. They determine that the last common ancestor of echinoderms contained an organized Hox cluster and endoskeleton genes, and suggest that cooption of bilateral development genes was involved in evolution of the pentameric body plan.
Collapse
Affiliation(s)
- Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Akihito Omori
- Sado Island Center for Ecological Sustainability, Niigata University, Niigata, Japan
| | - Rachel L Flores
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Sheri Satterfield
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | - Christine Nguyen
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | | | - Tetsuro Ikuta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan.,Tokyo Metropolitan University, Yokosuka, Tokyo, Japan
| | | | | | - Jason C K Leong
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Adrian Reich
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Meng Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yang Dong
- Yunnan Agricultural University, Kunming, China
| | - Yaondong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Si Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Masahiro Uesaka
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Yui Uchida
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tomoko F Shibata
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takahiro Bino
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute of Basic Biology, Okazaki, Aichi, Japan
| | - Mariko Kondo
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fayou Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Gary Wessel
- Providence Institute of Molecular Oogenesis, Brown University, Providence, RI, USA
| | - Hidetoshi Saiga
- Tokyo Metropolitan University, Yokosuka, Tokyo, Japan.,Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Chuo University, Tokyo, Japan
| | - R Andrew Cameron
- Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brian Livingston
- Dept. of Biological Sciences, California State Univesity, Long Beach, CA, USA
| | | | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Naoki Irie
- Dept. of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan. .,Universal Biology Institute, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Kipryushina YO, Yakovlev KV. Maternal control of early patterning in sea urchin embryos. Differentiation 2020; 113:28-37. [PMID: 32371341 DOI: 10.1016/j.diff.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Sea urchin development has been studied extensively for more than a century and considered regulative since the first experimental evidence. Further investigations have repeatedly supported this standpoint by revealing the presence of inductive mechanisms that alter cell fate decisions at early cleavage stages and flexibility of development in response to environmental conditions. Some features indicate that sea urchin development is not completely regulative, but actually includes determinative events. In 16-cell embryos, mesomeres and macromeres represent multipotency, while the cell fate of most vegetal micromeres is restricted. It is known that the mature sea urchin eggs are polarized by the asymmetrical distribution of some maternal mRNAs and proteins. Spatially-distributed maternal factors are necessary for the orientation of the primary animal-vegetal axis, which is established by both maternal and zygotic mechanisms later in development. The secondary dorsal-ventral axis is conditionally specified later in development. Dorsal-ventral polarity is very liable during the early cleavages, though more recent data argue that its direction may be oriented by maternal asymmetry. In this review, we focus on the role of maternal factors in initial embryonic patterning during the first cleavages of sea urchin embryos before activation of the embryonic genome.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Petri ND. Evolutionary Diversity of the Mechanisms Providing the Establishment of Left-Right Asymmetry in Metazoans. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
HAMADA H. Molecular and cellular basis of left-right asymmetry in vertebrates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:273-296. [PMID: 32788551 PMCID: PMC7443379 DOI: 10.2183/pjab.96.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the human body appears superficially symmetrical with regard to the left-right (L-R) axis, most visceral organs are asymmetric in terms of their size, shape, or position. Such morphological asymmetries of visceral organs, which are essential for their proper function, are under the control of a genetic pathway that operates in the developing embryo. In many vertebrates including mammals, the breaking of L-R symmetry occurs at a structure known as the L-R organizer (LRO) located at the midline of the developing embryo. This symmetry breaking is followed by transfer of an active form of the signaling molecule Nodal from the LRO to the lateral plate mesoderm (LPM) on the left side, which results in asymmetric expression of Nodal (a left-side determinant) in the left LPM. Finally, L-R asymmetric morphogenesis of visceral organs is induced by Nodal-Pitx2 signaling. This review will describe our current understanding of the mechanisms that underlie the generation of L-R asymmetry in vertebrates, with a focus on mice.
Collapse
Affiliation(s)
- Hiroshi HAMADA
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Correspondence should be addressed: H. Hamada, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan (e-mail: )
| |
Collapse
|
8
|
Yamada S, Tanaka Y, Imai KS, Saigou M, Onuma TA, Nishida H. Wavy movements of epidermis monocilia drive the neurula rotation that determines left-right asymmetry in ascidian embryos. Dev Biol 2019; 448:173-182. [PMID: 30059669 DOI: 10.1016/j.ydbio.2018.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/19/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022]
Abstract
Tadpole larvae of the ascidian, Halocynthia roretzi, show morphological left-right asymmetry in the brain structures and the orientation of tail bending within the vitelline membrane. Neurula embryos rotate along the anterior-posterior axis in a counterclockwise direction, and then this rotation stops when the left side of the embryo is oriented downwards. Contact of the left-side epidermis with the vitelline membrane promotes nodal gene expression in the left-side epidermis. This is a novel mechanism in which rotation of whole embryos provides the initial cue for breaking left-right symmetry. Here we show that epidermal monocilia, which appear at the neurula rotation stage, generate the driving force for rotation. A ciliary protein, Arl13b, fused with Venus YFP was used for live imaging of ciliary movements. Although overexpression of wild-type Arl13b fusion protein resulted in aberrant movements of the cilia and abrogation of neurula rotation, mutant Arl13b fusion protein, in which the GTPase and coiled-coil domains were removed, did not affect the normal ciliary movements and neurula rotation. Epidermis cilia moved in a wavy and serpentine way like sperm flagella but not in a rotational way or beating way with effective stroke and recovery stroke. They moved very slowly, at 1/7 Hz, consistent with the low angular velocity of neurula rotation (ca. 43°/min). The tips of most cilia pointed in the opposite direction of embryonic rotation. Similar motility was also observed in Ciona robusta embryos. When embryos were treated with a dynein inhibitor, Ciliobrevin D, both ciliary movements and neurula rotation were abrogated, showing that ciliary movements drive neurula rotation in Halocynthia. The drug also inhibited Ciona neurula rotation. Our observations suggest that the driving force of rotation is generated using the vitelline membrane as a substrate but not by making a water current around the embryo. It is of evolutionary interest that ascidians use ciliary movements to break embryonic left-right symmetry, like in many vertebrates. Meanwhile, ascidian embryos rotate as a whole, similar to embryos of non-vertebrate deuterostomes, such as echinoderm, hemichordate, and amphioxus, while swimming.
Collapse
Affiliation(s)
- Shiori Yamada
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuka Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Motohiko Saigou
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
9
|
|
10
|
Abstract
The control processes that underlie the progression of development can be summarized in maps of gene regulatory networks (GRNs). A critical step in their assembly is the systematic perturbation of network candidates. In sea urchins the most important method for interfering with expression in a gene-specific way is application of morpholino antisense oligonucleotides (MOs). MOs act by binding to their sequence complement in transcripts resulting in a block in translation or a change in splicing and thus result in a loss of function. Despite the tremendous success of this technology, recent comparisons to mutants generated by genome editing have led to renewed criticism and challenged its reliability. As with all methods based on sequence recognition, MOs are prone to off-target binding that may result in phenotypes that are erroneously ascribed to the loss of the intended target. However, the slow progression of development in sea urchins has enabled extremely detailed studies of gene activity in the embryo. This wealth of knowledge paired with the simplicity of the sea urchin embryo enables careful analysis of MO phenotypes through a variety of methods that do not rely on terminal phenotypes. This article summarizes the use of MOs in probing GRNs and the steps that should be taken to assure their specificity.
Collapse
|
11
|
Palmquist K, Davidson B. Establishment of lateral organ asymmetries in the invertebrate chordate, Ciona intestinalis. EvoDevo 2017; 8:12. [PMID: 28770040 PMCID: PMC5526266 DOI: 10.1186/s13227-017-0075-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The evolutionary emergence and diversification of the chordates appear to involve dramatic changes in organ morphogenesis along the left/right axis. However, the ancestral chordate mechanism for establishing lateral asymmetry remains ambiguous. Additionally, links between the initial establishment of lateral asymmetry and subsequent asymmetries in organ morphogenesis are poorly characterized. RESULTS To explore asymmetric organ morphogenesis during chordate evolution, we have begun to characterize left/right patterning of the heart and endodermal organs in an invertebrate chordate, Ciona intestinalis. Here, we show that Ciona has a laterally asymmetric, right-sided heart. Our data indicate that cardiac lateral asymmetry requires H+/K+ ion flux, but is independent of Nodal signaling. Our pharmacological inhibitor studies show that ion flux is required for polarization of epidermal cilia and neurula rotation and suggest that ion flux functions synergistically with chorion contact to drive cardiac laterality. Live imaging analysis revealed that larval heart progenitor cells undergo a lateral shift without displaying any migratory behaviors. Furthermore, we find that this passive shift corresponds with the emergence of lateral asymmetry in the endoderm, which is also ion flux dependent. CONCLUSIONS Our data suggest that ion flux promotes laterally asymmetric morphogenesis of the larval endoderm rudiment leading to a passive, Nodal-independent shift in the position of associated heart progenitor cells. These findings help to refine hypotheses regarding ancestral chordate left/right patterning mechanisms and how they have diverged within invertebrate and vertebrate chordate lineages.
Collapse
Affiliation(s)
- Karl Palmquist
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| | - Brad Davidson
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| |
Collapse
|
12
|
Koop D, Cisternas P, Morris VB, Strbenac D, Yang JYH, Wray GA, Byrne M. Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan. BMC DEVELOPMENTAL BIOLOGY 2017; 17:4. [PMID: 28193178 PMCID: PMC5307799 DOI: 10.1186/s12861-017-0145-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/26/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND The molecular mechanisms underlying the development of the unusual echinoderm pentameral body plan and their likeness to mechanisms underlying the development of the bilateral plans of other deuterostomes are of interest in tracing body plan evolution. In this first study of the spatial expression of genes associated with Nodal and BMP2/4 signalling during the transition to pentamery in sea urchins, we investigate Heliocidaris erythrogramma, a species that provides access to the developing adult rudiment within days of fertilization. RESULTS BMP2/4, and the putative downstream genes, Six1/2, Eya, Tbx2/3 and Msx were expressed in the earliest morphological manifestation of pentamery during development, the five hydrocoele lobes. The formation of the vestibular ectoderm, the specialized region overlying the left coelom that forms adult ectoderm, involved the expression of putative Nodal target genes Chordin, Gsc and BMP2/4 and putative BMP2/4 target genes Dlx, Msx and Tbx. The expression of Nodal, Lefty and Pitx2 in the right ectoderm, and Pitx2 in the right coelom, was as previously observed in other sea urchins. CONCLUSION That genes associated with Nodal and BMP2/4 signalling are expressed in the hydrocoele lobes, indicates that they have a role in the developmental transition to pentamery, contributing to our understanding of how the most unusual body plan in the Bilateria may have evolved. We suggest that the Nodal and BMP2/4 signalling cascades might have been duplicated or split during the evolution to pentamery.
Collapse
Affiliation(s)
- Demian Koop
- School of Medical Science and Bosch Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Paula Cisternas
- School of Medical Science and Bosch Institute, The University of Sydney, Sydney, NSW 2006 Australia
| | - Valerie B. Morris
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006 Australia
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006 Australia
| | - Jean Yee Hwa Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006 Australia
| | - Gregory A. Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708 USA
| | - Maria Byrne
- School of Medical Science and Bosch Institute, The University of Sydney, Sydney, NSW 2006 Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
13
|
Tisler M, Wetzel F, Mantino S, Kremnyov S, Thumberger T, Schweickert A, Blum M, Vick P. Cilia are required for asymmetric nodal induction in the sea urchin embryo. BMC DEVELOPMENTAL BIOLOGY 2016; 16:28. [PMID: 27553781 PMCID: PMC4994401 DOI: 10.1186/s12861-016-0128-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023]
Abstract
Background Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Results Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Conclusions Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0128-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Tisler
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Franziska Wetzel
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Sabrina Mantino
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Stanislav Kremnyov
- Department of Embryology, Lomonosov Moscow State University, Moscow, Russia
| | - Thomas Thumberger
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany.,Present Address: Centre for Organismal Studies, Im Neuenheimer Feld 230, Heidelberg University, 69120, Heidelberg, Germany
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Martin Blum
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany
| | - Philipp Vick
- University of Hohenheim, Institute of Zoology, 70593, Stuttgart, Germany.
| |
Collapse
|
14
|
Arnone MI, Andrikou C, Annunziata R. Echinoderm systems for gene regulatory studies in evolution and development. Curr Opin Genet Dev 2016; 39:129-137. [DOI: 10.1016/j.gde.2016.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/07/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|
15
|
Piacentino ML, Chung O, Ramachandran J, Zuch DT, Yu J, Conaway EA, Reyna AE, Bradham CA. Zygotic LvBMP5-8 is required for skeletal patterning and for left–right but not dorsal–ventral specification in the sea urchin embryo. Dev Biol 2016; 412:44-56. [DOI: 10.1016/j.ydbio.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/31/2016] [Accepted: 02/18/2016] [Indexed: 01/25/2023]
|
16
|
Takemoto A, Miyamoto T, Simono F, Kurogi N, Shirae-Kurabayashi M, Awazu A, Suzuki KIT, Yamamoto T, Sakamoto N. Cilia play a role in breaking left-right symmetry of the sea urchin embryo. Genes Cells 2016; 21:568-78. [DOI: 10.1111/gtc.12362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/25/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Ayumi Takemoto
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology; Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima 734-8553 Japan
| | - Fumie Simono
- Hiroshima Prefectural Hiroshima Kokutaiji High School; Hiroshima 730-0042 Japan
- An Educational Project for Exciting Science Learning for Pupils; Hiroshima University; Higashi-Hiroshima 739-8524 Japan
| | - Nao Kurogi
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Mie 517-0004 Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
- Research Center for the Mathematics on Chromatin Live Dynamics; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Ken-ichi T. Suzuki
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
- Research Center for the Mathematics on Chromatin Live Dynamics; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| | - Naoaki Sakamoto
- Department of Mathematical and Life Sciences; Graduate School of Science; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
- Research Center for the Mathematics on Chromatin Live Dynamics; Hiroshima University; Higashi-Hiroshima 739-8526 Japan
| |
Collapse
|
17
|
Warner JF, Miranda EL, McClay DR. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin. Dev Biol 2016; 411:314-324. [PMID: 26872875 DOI: 10.1016/j.ydbio.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 01/22/2023]
Abstract
Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it's contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin.
Collapse
Affiliation(s)
- Jacob F Warner
- Duke University Department of Biology, Durham, NC, United States
| | - Esther L Miranda
- Duke University Department of Biology, Durham, NC, United States
| | - David R McClay
- Duke University Department of Biology, Durham, NC, United States.
| |
Collapse
|
18
|
Byrne M, Koop D, Cisternas P, Strbenac D, Yang JYH, Wray GA. Transcriptomic analysis of Nodal- and BMP-associated genes during juvenile development of the sea urchin Heliocidaris erythrogramma. Mar Genomics 2015; 24 Pt 1:41-5. [DOI: 10.1016/j.margen.2015.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/30/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
|
19
|
Soukup V, Yong LW, Lu TM, Huang SW, Kozmik Z, Yu JK. The Nodal signaling pathway controls left-right asymmetric development in amphioxus. EvoDevo 2015; 6:5. [PMID: 25954501 PMCID: PMC4423147 DOI: 10.1186/2041-9139-6-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/27/2015] [Indexed: 11/24/2022] Open
Abstract
Background Nodal is an important determinant of the left-right (LR) body axis in bilaterians, specifying the right side in protostomes and non-chordate deuterostomes as opposed to the left side in chordates. Amphioxus represents an early-branching chordate group, rendering it especially useful for studying the character states that predate the origin of vertebrates. However, its anatomy, involving offset arrangement of axial structures, marked asymmetry of the oropharyngeal region, and, most notably, a mouth positioned on the left side, contrasts with the symmetric arrangement of the corresponding regions in other chordates. Results We show that the Nodal signaling pathway acts to specify the LR axis in the cephalochordate amphioxus in a similar way as in vertebrates. At early neurula stages, Nodal switches from initial bilateral to the left-sided expression and subsequently specifies the left embryonic side. Perturbation of Nodal signaling with small chemical inhibitors (SB505124 and SB431542) alters expression of other members of the pathway and of left/right-sided, organ-specific genes. Upon inhibition, larvae display loss of the innate alternation of both somites and axons of peripheral nerves and loss of left-sided pharyngeal structures, such as the mouth, the preoral pit, and the duct of the club-shaped gland. Concomitantly, the left side displays ectopic expression of otherwise right-sided genes, and the larvae exhibit bilaterally symmetrical morphology, with duplicated endostyle and club-shaped gland structures. Conclusions We demonstrate that Nodal signaling is necessary for establishing the LR embryonic axis and for developing profound asymmetry in amphioxus. Our data suggest that initial symmetry breaking in amphioxus and propagation of the pathway on the left side correspond with the situation in vertebrates. However, the organs that become targets of the pathway differ between amphioxus and vertebrates, which may explain the pronounced asymmetry of its oropharyngeal and axial structures and the left-sided position of the mouth. Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-6-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vladimir Soukup
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 14220 Czech Republic
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Song-Wei Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague, 14220 Czech Republic
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan ; Institute of Oceanography, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 10617 Taiwan
| |
Collapse
|