1
|
Zhao Z, Zhao Z, Cheng F, Wang Z, Geng Q, Wang Y, Niu Y, Zuo Q, Zhang Y. Analysis of the Molecular Mechanism of Energy Metabolism in the Sex Differentiation of Chickens Based on Transcriptome Sequencing. Genes (Basel) 2024; 15:1035. [PMID: 39202395 PMCID: PMC11353435 DOI: 10.3390/genes15081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The determination of sex in mammals is established and controlled by various complex mechanisms. In contrast, sex control in poultry remains an unresolved issue. In this study, RNA-sequencing was conducted for male gonads and ovarian tissues in chicken embryos of up to 18.5 days to identify metabolic factors influencing male and female sex differentiation, as well as gonadal development. Our results reveal that PKM2, a critical glycolysis-related protein, plays a significant role in chicken sex differentiation via PPARG, a crucial hormone gene. We propose that our discoveries bolster the notion that glycolysis and oxidative phosphorylation function as antecedent contributors to sexual phenotypic development and preservation.
Collapse
Affiliation(s)
- Ziduo Zhao
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongyi Zhao
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Fufu Cheng
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhe Wang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingqing Geng
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| | - Yingjie Niu
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yani Zhang
- Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.Z.); (Z.Z.); (F.C.); (Z.W.); (Q.G.); (Y.N.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Luo X, Guo J, Zhang J, Ma Z, Li H. Overview of chicken embryo genes related to sex differentiation. PeerJ 2024; 12:e17072. [PMID: 38525278 PMCID: PMC10959104 DOI: 10.7717/peerj.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Sex determination in chickens at an early embryonic stage has been a longstanding challenge in poultry production due to the unique ZZ:ZW sex chromosome system and various influencing factors. This review has summarized the genes related to the sex differentiation of chicken early embryos (mainly Dmrt1, Sox9, Amh, Cyp19a1, Foxl2, Tle4z1, Jun, Hintw, Ube2i, Spin1z, Hmgcs1, Foxd1, Tox3, Ddx4, cHemgn and Serpinb11 in this article), and has found that these contributions enhance our understanding of the genetic basis of sex determination in chickens, while identifying potential gene targets for future research. This knowledge may inform and guide the development of sex screening technologies for hatching eggs and support advancements in gene-editing approaches for chicken embryos. Moreover, these insights offer hope for enhancing animal welfare and promoting conservation efforts in poultry production.
Collapse
Affiliation(s)
- Xiaolu Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jiancheng Guo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jiahang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
3
|
Houchen CJ, Bergman‐Gonzalez M, Bumann EE. A novel qPCR-based technique for identifying avian sex: An illustration within embryonic craniofacial bone. Genesis 2024; 62:e23530. [PMID: 37353984 PMCID: PMC11457736 DOI: 10.1002/dvg.23530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023]
Abstract
Sex is a biological variable important to consider in all biomedical experiments. However, doing so in avian embryos can be challenging as sex can be morphologically indistinguishable. Unlike humans, female birds are the heterogametic sex with Z and W sex chromosomes. The female-specific W chromosome has previously been identified in chick using a species-specific polymerase chain reaction (PCR) technique. We developed a novel reverse transcription quantitative PCR (RT-qPCR) technique that amplifies the W chromosome gene histidine triad nucleotide-binding protein W (HINTW) in chick, quail, and duck. Accuracy of the HINTW RT-qPCR primer set was confirmed in all three species using species-specific PCR, including a novel quail-specific HINTW PCR primer set. Bone development-related gene expression was then analyzed by sex in embryonic lower jaws of duck and quail, as adult duck beak size is known to be sexually dimorphic while quail beak size is not. Trends toward sex differences were found in duck gene expression but not in quail, as expected. With these novel RT-qPCR and PCR embryo sexing methods, sex of chick, quail, and duck embryos can now be assessed by either/both RNA and DNA, which facilitates analysis of sex as a biological variable in studies using these model organisms.
Collapse
Affiliation(s)
- Claire J. Houchen
- Department of Oral and Craniofacial Sciences, School of DentistryUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Maria Bergman‐Gonzalez
- Department of Oral and Craniofacial Sciences, School of DentistryUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Erin E. Bumann
- Department of Oral and Craniofacial Sciences, School of DentistryUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| |
Collapse
|
4
|
Luo H, Zhou H, Jiang S, He C, Xu K, Ding J, Liu J, Qin C, Chen K, Zhou W, Wang L, Yang W, Zhu W, Meng H. Gene Expression Profiling Reveals Potential Players of Sex Determination and Asymmetrical Development in Chicken Embryo Gonads. Int J Mol Sci 2023; 24:14597. [PMID: 37834055 PMCID: PMC10572726 DOI: 10.3390/ijms241914597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Despite the notable progress made in recent years, the understanding of the genetic control of gonadal sex differentiation and asymmetrical ovariogenesis in chicken during embryonic development remains incomplete. This study aimed to identify potential key genes and speculate about the mechanisms associated with ovary and testis development via an analysis of the results of PacBio and Illumina transcriptome sequencing of embryonic chicken gonads at the initiation of sexual differentiation (E4.5, E5.5, and E6.5). PacBio sequencing detected 328 and 233 significantly up-regulated transcript isoforms in females and males at E4.5, respectively. Illumina sequencing detected 95, 296 and 445 DEGs at E4.5, E5.5, and E6.5, respectively. Moreover, both sexes showed asymmetrical expression in gonads, and more DEGs were detected on the left side. There were 12 DEGs involved in cell proliferation shared between males and females in the left gonads. GO analysis suggested that coagulation pathways may be involved in the degradation of the right gonad in females and that blood oxygen transport pathways may be involved in preventing the degradation of the right gonad in males. These results provide a comprehensive expression profile of chicken embryo gonads at the initiation of sexual differentiation, which can serve as a theoretical basis for further understanding the mechanism of bird sex determination and its evolutionary process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (H.Z.); (S.J.); (C.H.); (K.X.); (J.D.); (J.L.); (C.Q.); (K.C.); (W.Z.); (L.W.); (W.Y.); (W.Z.)
| |
Collapse
|
5
|
Deviatiiarov R, Nagai H, Ismagulov G, Stupina A, Wada K, Ide S, Toji N, Zhang H, Sukparangsi W, Intarapat S, Gusev O, Sheng G. Dosage compensation of Z sex chromosome genes in avian fibroblast cells. Genome Biol 2023; 24:213. [PMID: 37730643 PMCID: PMC10510239 DOI: 10.1186/s13059-023-03055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/08/2023] [Indexed: 09/22/2023] Open
Abstract
In birds, sex is genetically determined; however, the molecular mechanism is not well-understood. The avian Z sex chromosome (chrZ) lacks whole chromosome inactivation, in contrast to the mammalian chrX. To investigate chrZ dosage compensation and its role in sex specification, we use a highly quantitative method and analyze transcriptional activities of male and female fibroblast cells from seven bird species. Our data indicate that three fourths of chrZ genes are strictly compensated across Aves, similar to mammalian chrX. We also present a complete list of non-compensated chrZ genes and identify Ribosomal Protein S6 (RPS6) as a conserved sex-dimorphic gene in birds.
Collapse
Affiliation(s)
- Ruslan Deviatiiarov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Life Improvement by Future Technologies Institute, Moscow, Russian Federation
| | - Hiroki Nagai
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Galym Ismagulov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Anastasia Stupina
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Kazuhiro Wada
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Shinji Ide
- Kumamoto City Zoo and Botanical Garden, Kumamoto, Japan
| | - Noriyuki Toji
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Heng Zhang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chonburi, Thailand
| | | | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
- Graduate School of Medicine, Juntendo University, Tokyo, Japan.
- Life Improvement by Future Technologies Institute, Moscow, Russian Federation.
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
6
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Sun C, Jin K, Zhou J, Zuo Q, Song J, Yani Z, Chen G, Li B. Role and function of the Hintw in early sex differentiation in chicken ( Gallus gallus) embryo. Anim Biotechnol 2023; 34:56-66. [PMID: 34153202 DOI: 10.1080/10495398.2021.1935981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mono-Sex culturing is an important methodology for intensive livestock and poultry production. Here, Hintw was identified as a potential key gene in sex-determination process in chickens via RNA-seq. Then we developed an effective method to interfere or overexpress Hintw in chicken embryos through the intravascular injection. QRT-PCR, ELISA and H&E staining were used to detect the effects of Hintw on gonadal development of chicken embryos. Results showed that Hintw exhibited a female-biased expression pattern in the early stage of PGCs (primordial germ cells) in embryonic gonads. The qRT-PCR analysis showed that Foxl2, Cyp19a1 in females were upregulated under the overexpression of Hintw, while Sox9 and Dmrt1 were downregulated Hintw. Overexpression of Hintw can promote the development of gonadal cortex, while interference with Hintw show the opposite result. Additionally, we found that overexpression of the Hintw in male chicken embryos could inhibit androgen levels and increase estrogen levels. On the other hand, interfering with Hintw in female chicken embryos decreased estrogen levels and increased androgen levels. In conclusion, this work sets the basis for the understanding of the molecular regulatory network for the sex-determination process in chicken embryos as well as providing the theoretical basis for mono-sex culturing of poultry.
Collapse
Affiliation(s)
- Changhua Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Department of Food technology, College of Biochemical Engineering, Yangzhou Polytechnic College, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jing Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MD, USA
| | - Zhang Yani
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Janesick AS, Scheibinger M, Benkafadar N, Kirti S, Heller S. Avian auditory hair cell regeneration is accompanied by JAK/STAT-dependent expression of immune-related genes in supporting cells. Development 2022; 149:dev200113. [PMID: 35420675 PMCID: PMC10656459 DOI: 10.1242/dev.200113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/31/2022] [Indexed: 11/20/2023]
Abstract
The avian hearing organ is the basilar papilla that, in sharp contrast to the mammalian cochlea, can regenerate sensory hair cells and thereby recover from deafness within weeks. The mechanisms that trigger, sustain and terminate the regenerative response in vivo are largely unknown. Here, we profile the changes in gene expression in the chicken basilar papilla after aminoglycoside antibiotic-induced hair cell loss using RNA-sequencing. We identified changes in gene expression of a group of immune-related genes and confirmed with single-cell RNA-sequencing that these changes occur in supporting cells. In situ hybridization was used to further validate these findings. We determined that the JAK/STAT signaling pathway is essential for upregulation of the damage-response genes in supporting cells during the second day after induction of hair cell loss. Four days after ototoxic damage, we identified newly regenerated, nascent auditory hair cells that express genes linked to termination of the JAK/STAT signaling response. The robust, transient expression of immune-related genes in supporting cells suggests a potential functional involvement of JAK/STAT signaling in sensory hair cell regeneration.
Collapse
Affiliation(s)
- Amanda S. Janesick
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Nesrine Benkafadar
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Sakin Kirti
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Stefan Heller
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| |
Collapse
|
9
|
Janesick A, Scheibinger M, Benkafadar N, Kirti S, Ellwanger DC, Heller S. Cell-type identity of the avian cochlea. Cell Rep 2021; 34:108900. [PMID: 33761346 DOI: 10.1016/j.celrep.2021.108900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/22/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
In contrast to mammals, birds recover naturally from acquired hearing loss, which makes them an ideal model for inner ear regeneration research. Here, we present a validated single-cell RNA sequencing resource of the avian cochlea. We describe specific markers for three distinct types of sensory hair cells, including a previously unknown subgroup, which we call superior tall hair cells. We identify markers for the supporting cells associated with tall hair cells, which represent the facultative stem cells of the avian inner ear. Likewise, we present markers for supporting cells that are located below the short cochlear hair cells. We further infer spatial expression gradients of hair cell genes along the tonotopic axis of the cochlea. This resource advances neurobiology, comparative biology, and regenerative medicine by providing a basis for comparative studies with non-regenerating mammalian cochleae and for longitudinal studies of the regenerating avian cochlea.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | - Mirko Scheibinger
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Nesrine Benkafadar
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Sakin Kirti
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel C Ellwanger
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Genome Analysis Unit, Amgen Research, Amgen, Inc., South San Francisco, CA 94080, USA
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
10
|
Hirst CE, Major AT, Ayers KL, Brown RJ, Mariette M, Sackton TB, Smith CA. Sex Reversal and Comparative Data Undermine the W Chromosome and Support Z-linked DMRT1 as the Regulator of Gonadal Sex Differentiation in Birds. Endocrinology 2017; 158:2970-2987. [PMID: 28911174 DOI: 10.1210/en.2017-00316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
The exact genetic mechanism regulating avian gonadal sex differentiation has not been completely resolved. The most likely scenario involves a dosage mechanism, whereby the Z-linked DMRT1 gene triggers testis development. However, the possibility still exists that the female-specific W chromosome may harbor an ovarian determining factor. In this study, we provide evidence that the universal gene regulating gonadal sex differentiation in birds is Z-linked DMRT1 and not a W-linked (ovarian) factor. Three candidate W-linked ovarian determinants are HINTW, female-expressed transcript 1 (FET1), and female-associated factor (FAF). To test the association of these genes with ovarian differentiation in the chicken, we examined their expression following experimentally induced female-to-male sex reversal using the aromatase inhibitor fadrozole (FAD). Administration of FAD on day 3 of embryogenesis induced a significant loss of aromatase enzyme activity in female gonads and masculinization. However, expression levels of HINTW, FAF, and FET1 were unaltered after experimental masculinization. Furthermore, comparative analysis showed that FAF and FET1 expression could not be detected in zebra finch gonads. Additionally, an antibody raised against the predicted HINTW protein failed to detect it endogenously. These data do not support a universal role for these genes or for the W sex chromosome in ovarian development in birds. We found that DMRT1 (but not the recently identified Z-linked HEMGN gene) is male upregulated in embryonic zebra finch and emu gonads, as in the chicken. As chicken, zebra finch, and emu exemplify the major evolutionary clades of birds, we propose that Z-linked DMRT1, and not the W sex chromosome, regulates gonadal sex differentiation in birds.
Collapse
Affiliation(s)
- Claire E Hirst
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Katie L Ayers
- Murdoch Childrens Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Victoria 3010, Australia
| | - Rosie J Brown
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mylene Mariette
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|