1
|
Puli OR, Gogia N, Chimata AV, Yorimitsu T, Nakagoshi H, Kango-Singh M, Singh A. Genetic mechanism regulating diversity in the placement of eyes on the head of animals. Proc Natl Acad Sci U S A 2024; 121:e2316244121. [PMID: 38588419 PMCID: PMC11032433 DOI: 10.1073/pnas.2316244121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.
Collapse
Affiliation(s)
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH45469
| | | | - Takeshi Yorimitsu
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH45469
- Premedical Program, University of Dayton, Dayton, OH45469
- Integrative Science and Engineering, University of Dayton, Dayton, OH45469
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH45469
- Premedical Program, University of Dayton, Dayton, OH45469
- Integrative Science and Engineering, University of Dayton, Dayton, OH45469
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN47809
| |
Collapse
|
2
|
Price PD, Parkus SM, Wright AE. Recent progress in understanding the genomic architecture of sexual conflict. Curr Opin Genet Dev 2023; 80:102047. [PMID: 37163877 DOI: 10.1016/j.gde.2023.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/02/2023] [Accepted: 04/02/2023] [Indexed: 05/12/2023]
Abstract
Genomic conflict between the sexes over shared traits is widely assumed to be resolved through the evolution of sex-biased expression and the subsequent emergence of sexually dimorphic phenotypes. However, while there is support for a broad relationship between genome-wide patterns of expression level and sexual conflict, recent studies suggest that sex differences in the nature and strength of interactions between loci are instead key to conflict resolution. Furthermore, the advent of new technologies for measuring and perturbing expression means we now have much more power to detect genomic signatures of sexual conflict. Here, we review our current understanding of the genomic architecture of sexual conflict in the light of these new studies and highlight the potential for novel approaches to address outstanding knowledge gaps.
Collapse
Affiliation(s)
- Peter D Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, United Kingdom. https://twitter.com/@PeterDPrice
| | - Sylvie M Parkus
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, United Kingdom
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, United Kingdom.
| |
Collapse
|
3
|
Mehta AS, Deshpande P, Chimata AV, Tsonis PA, Singh A. Newt regeneration genes regulate Wingless signaling to restore patterning in Drosophila eye. iScience 2021; 24:103166. [PMID: 34746690 PMCID: PMC8551474 DOI: 10.1016/j.isci.2021.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Newts utilize their unique genes to restore missing parts by strategic regulation of conserved signaling pathways. Lack of genetic tools poses challenges to determine the function of such genes. Therefore, we used the Drosophila eye model to demonstrate the potential of 5 unique newt (Notophthalmus viridescens) gene(s), viropana1-viropana5 (vna1-vna5), which were ectopically expressed in L 2 mutant and GMR-hid, GMR-GAL4 eye. L 2 exhibits the loss of ventral half of early eye and head involution defective (hid) triggers cell-death during later eye development. Surprisingly, newt genes significantly restore missing photoreceptor cells both in L 2 and GMR>hid background by upregulating cell-proliferation and blocking cell-death, regulating evolutionarily conserved Wingless (Wg)/Wnt signaling pathway and exhibit non-cell-autonomous rescues. Further, Wg/Wnt signaling acts downstream of newt genes. Our data highlights that unique newt proteins can regulate conserved pathways to trigger a robust restoration of missing photoreceptor cells in Drosophila eye model with weak restoration capability.
Collapse
Affiliation(s)
| | | | | | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
- Premedical Program, University of Dayton, Dayton, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
4
|
Gogia N, Chimata AV, Deshpande P, Singh A, Singh A. Hippo signaling: bridging the gap between cancer and neurodegenerative disorders. Neural Regen Res 2021; 16:643-652. [PMID: 33063715 PMCID: PMC8067938 DOI: 10.4103/1673-5374.295273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During development, regulation of organ size requires a balance between cell proliferation, growth and cell death. Dysregulation of these fundamental processes can cause a variety of diseases. Excessive cell proliferation results in cancer whereas excessive cell death results in neurodegenerative disorders. Many signaling pathways known-to-date have a role in growth regulation. Among them, evolutionarily conserved Hippo signaling pathway is unique as it controls both cell proliferation and cell death by a variety of mechanisms during organ sculpture and development. Neurodegeneration, a complex process of progressive death of neuronal population, results in fatal disorders with no available cure to date. During normal development, cell death is required for sculpting of an organ. However, aberrant cell death in neuronal cell population can result in neurodegenerative disorders. Hippo pathway has gathered major attention for its role in growth regulation and cancer, however, other functions like its role in neurodegeneration are also emerging rapidly. This review highlights the role of Hippo signaling in cell death and neurodegenerative diseases and provide the information on the chemical inhibitors employed to block Hippo pathway. Understanding Hippo mediated cell death mechanisms will aid in development of reliable and effective therapeutic strategies in future.
Collapse
Affiliation(s)
- Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, USA
| | | | | | - Aditi Singh
- Medical Candidate, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Amit Singh
- Department of Biology; Premedical Program; Center for Tissue Regeneration and Engineering at Dayton (TREND); The Integrative Science and Engineering Center, University of Dayton, Dayton, OH; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
5
|
Tare M, Chimata AV, Gogia N, Narwal S, Deshpande P, Singh A. An E3 ubiquitin ligase, cullin-4 regulates retinal differentiation in Drosophila eye. Genesis 2020; 58:e23395. [PMID: 32990387 PMCID: PMC9277906 DOI: 10.1002/dvg.23395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 11/12/2022]
Abstract
During organogenesis, cell proliferation is followed by the differentiation of specific cell types to form an organ. Any aberration in differentiation can result in developmental defects, which can result in a partial to a near-complete loss of an organ. We employ the Drosophila eye model to understand the genetic and molecular mechanisms involved in the process of differentiation. In a forward genetic screen, we identified, cullin-4 (cul-4), which encodes an E3 ubiquitin ligase, to play an important role in retinal differentiation. During development, cul-4 is known to be involved in protein degradation, regulation of genomic stability, and regulation of cell cycle. Previously, we have reported that cul-4 regulates cell death during eye development by downregulating Wingless (Wg)/Wnt signaling pathway. We found that loss-of-function of cul-4 results in a reduced eye phenotype, which can be due to onset of cell death. However, we found that loss-of-function of cul-4 also affects retinal development by downregulating retinal determination (RD) gene expression. Early markers of retinal differentiation are dysregulated in cul-4 loss of function conditions, indicating that cul-4 is necessary for differentiation. Furthermore, loss-of-function of cul-4 ectopically induces expression of negative regulators of eye development like Wg and Homothorax (Hth). During eye development, Wg is known to block the progression of a synchronous wave of differentiation referred to as Morphogenetic furrow (MF). In cul-4 loss-of-function background, expression of dpp-lacZ, a MF marker, is significantly downregulated. Our data suggest a new role of cul-4 in retinal differentiation. These studies may have significant bearings on our understanding of early eye development.
Collapse
Affiliation(s)
- Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, India
| | | | - Neha Gogia
- Department of Biology, University of Dayton, 300 College Park Drive, Dayton, OH, USA
| | - Sonia Narwal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, India
| | - Prajakta Deshpande
- Department of Biology, University of Dayton, 300 College Park Drive, Dayton, OH, USA
| | - Amit Singh
- Department of Biology, University of Dayton, 300 College Park Drive, Dayton, OH, USA
- Premedical Program, University of Dayton, 300 College Park Drive, Dayton, OH, USA
- Center for Tissue Regeneration & Engineering (TREND), University of Dayton, 300 College Park Drive, Dayton, OH, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
6
|
Gogia N, Sarkar A, Mehta AS, Ramesh N, Deshpande P, Kango-Singh M, Pandey UB, Singh A. Inactivation of Hippo and cJun-N-terminal Kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo. Neurobiol Dis 2020; 140:104837. [PMID: 32199908 DOI: 10.1016/j.nbd.2020.104837] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), a late-onset neurodegenerative disorder characterized by the loss of motor neurons in the central nervous system, has no known cure to-date. Disease causing mutations in human Fused in Sarcoma (FUS) leads to aggressive and juvenile onset of ALS. FUS is a well-conserved protein across different species, which plays a crucial role in regulating different aspects of RNA metabolism. Targeted misexpression of FUS in Drosophila model recapitulates several interesting phenotypes relevant to ALS including cytoplasmic mislocalization, defects at the neuromuscular junction and motor dysfunction. We screened for the genetic modifiers of human FUS-mediated neurodegenerative phenotype using molecularly defined deficiencies. We identified hippo (hpo), a component of the evolutionarily conserved Hippo growth regulatory pathway, as a genetic modifier of FUS mediated neurodegeneration. Gain-of-function of hpo triggers cell death whereas its loss-of-function promotes cell proliferation. Downregulation of the Hippo signaling pathway, using mutants of Hippo signaling, exhibit rescue of FUS-mediated neurodegeneration in the Drosophila eye, as evident from reduction in the number of TUNEL positive nuclei as well as rescue of axonal targeting from the retina to the brain. The Hippo pathway activates c-Jun amino-terminal (NH2) Kinase (JNK) mediated cell death. We found that downregulation of JNK signaling is sufficient to rescue FUS-mediated neurodegeneration in the Drosophila eye. Our study elucidates that Hippo signaling and JNK signaling are activated in response to FUS accumulation to induce neurodegeneration. These studies will shed light on the genetic mechanism involved in neurodegeneration observed in ALS and other associated disorders.
Collapse
Affiliation(s)
- Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Ankita Sarkar
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | | | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, PA, USA
| | | | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; Premedical Program, University of Dayton, Dayton, OH 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, PA, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; Premedical Program, University of Dayton, Dayton, OH 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
7
|
Irwin M, Tare M, Singh A, Puli OR, Gogia N, Riccetti M, Deshpande P, Kango-Singh M, Singh A. A Positive Feedback Loop of Hippo- and c-Jun-Amino-Terminal Kinase Signaling Pathways Regulates Amyloid-Beta-Mediated Neurodegeneration. Front Cell Dev Biol 2020; 8:117. [PMID: 32232042 PMCID: PMC7082232 DOI: 10.3389/fcell.2020.00117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD, OMIM: 104300) is an age-related disorder that affects millions of people. One of the underlying causes of AD is generation of hydrophobic amyloid-beta 42 (Aβ42) peptides that accumulate to form amyloid plaques. These plaques induce oxidative stress and aberrant signaling, which result in the death of neurons and other pathologies linked to neurodegeneration. We have developed a Drosophila eye model of AD by targeted misexpression of human Aβ42 in the differentiating retinal neurons, where an accumulation of Aβ42 triggers a characteristic neurodegenerative phenotype. In a forward deficiency screen to look for genetic modifiers, we identified a molecularly defined deficiency, which suppresses Aβ42-mediated neurodegeneration. This deficiency uncovers hippo (hpo) gene, a member of evolutionarily conserved Hippo signaling pathway that regulates growth. Activation of Hippo signaling causes cell death, whereas downregulation of Hippo signaling triggers cell proliferation. We found that Hippo signaling is activated in Aβ42-mediated neurodegeneration. Downregulation of Hippo signaling rescues the Aβ42-mediated neurodegeneration, whereas upregulation of Hippo signaling enhances the Aβ42-mediated neurodegeneration phenotypes. It is known that c-Jun-amino-terminal kinase (JNK) signaling pathway is upregulated in AD. We found that activation of JNK signaling enhances the Aβ42-mediated neurodegeneration, whereas downregulation of JNK signaling rescues the Aβ42-mediated neurodegeneration. We tested the nature of interactions between Hippo signaling and JNK signaling in Aβ42-mediated neurodegeneration using genetic epistasis approach. Our data suggest that Hippo signaling and JNK signaling, two independent signaling pathways, act synergistically upon accumulation of Aβ42 plaques to trigger cell death. Our studies demonstrate a novel role of Hippo signaling pathway in Aβ42-mediated neurodegeneration.
Collapse
Affiliation(s)
- Madison Irwin
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, United States
| | - Matthew Riccetti
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
- Premedical Program, University of Dayton, Dayton, OH, United States
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, United States
- Premedical Program, University of Dayton, Dayton, OH, United States
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, United States
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, United States
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, United States
| |
Collapse
|