1
|
He Y, Wang H, Ma W, Gao C, Tian R, Su X, Feng H, Huang L. Biocontrol potential of the active substance isolated from the endophytic fungus Aa-Lcht against apple Valsa canker. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106250. [PMID: 40015846 DOI: 10.1016/j.pestbp.2024.106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025]
Abstract
Apple Valsa canker (AVC), primarily caused by the pathogenic fungus Valsa mali, is a devastating disease of apple. The development and application of high efficiency and low toxicity fungicides are of great significance for disease control. Natural active substances serve as a vital foundation for the development of novel green fungicides. In previous studies, the endophytic fungus Aa-Lcht was confirmed to contain specific inhibitory effect against V. mali. This study confirmed that Aa-Lcht fermentation broth (FB)'s suppression of V. mali growth and conidial germination, exhibiting AVC prevention. Through extraction, isolation, and purification, one active substance with high inhibitory effect on V. mali was obtained and identified as altenusin. Its concentration value for 50 % of maximal effect (EC50 values) against V. mali mycelium growth was 3.118 μg/mL. Before V. mali infection, the lesion length of apple twigs and lesion area of fruits pretreated with altenusin decreased by 47.27 % and 80.52 %, respectively. Further research revealed that the hyphae of V. mali treated with altenusin exhibited irregular thickening of cell walls, severe vacuolation within the cells, and protoplasmic exudation. Meanwhile, transcriptome analysis indicated that altenusin primarily inhibited V. mali by interfering with the normal hyphal cell metabolism, substance degradation, peptidase activity, and proteolysis functions. Additionally, altenusin could also significantly up-regulate the expression of immunity resistance-related genes MdCYP81F2, MdPR2, MdPR4, and MdPR5 in apple. Summarizing the above, the altenusin provides valuable insights for the development of novel green fungicides for controlling AVC disease, contributing to the safe and healthy development of apple production.
Collapse
Affiliation(s)
- Yanting He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hua Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weimin Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chengyu Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Runze Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaozhou Su
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Zhou Y, Wang X, Chen K, Han C, Guan H, Wang Y, Zhao Y. Feasibility and potential of terahertz spectral and imaging technology for Apple Valsa canker detection: A preliminary investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125308. [PMID: 39490176 DOI: 10.1016/j.saa.2024.125308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Apple Valsa canker (AVC) caused by the Ascomycete Valsa mali, seriously constrains the production and quality of apple fruits. The symptomless incubation characteristics of Valsa mali make it highly challenging to detect AVC at an early infection stage. After infecting the wound of apple bark, the pathogenic hyphae of AVC will expand and colonize the phloem tissue. Meanwhile, various enzymes and toxic substances released by hyphae cause the decomposition of cellulose and lignin, and the generation of poisonous secondary metabolites in bark tissue. However, these early symptoms of AVC are invisible from the bark's appearance. Fortunately, Terahertz Spectral Imaging (ThzSI) technology with the advantage of penetrating, and fingerprinting is promising for detecting hidden or slight symptoms of the fungal infection. This study is a preliminary investigation of terahertz frequency-domain spectra for AVC in the early stage of infection. Healthy and two-week-infected apple tree branches were prepared for capturing ThzS images, and the spectral data were preprocessed by Multivariate scattering correction (MSC), Savitzky-Golay convolution smoothing (SG), and standard normal variate (SNV) respectively to remove data noise and improve data quality. Principal component analysis (PCA), competitive adaptive reweighted sampling (CARS), and random frog (RFROG) were employed to extract the spectral feature bands to eliminate redundant data and improve computational efficiency. Machine learning models were established based on the spectral features to detect AVC at an early infection stage, where 11 of them exhibited the best performance with F1-score of 99.72%. To further explore disease information in spatial spectra, imaging data were acquired using terahertz imaging technology. Based on imaging data, pseudo-color imaging, histogram equalization, and Otsu segmentation were employed to visualize early infection areas in apple barks. Furthermore, histogram feature (HF), shape feature (SF), and local binary pattern (LBP) extracted from terahertz spectral images were utilized to establish the SVM, RF, and KNN models. HF-SF-KNN and HF-SF-LBP-KNN with the best performance achieved F1-score of 98.82%. This study presents a preliminary application of terahertz spectral and imaging technology for early-stage AVC detection and demonstrates its feasibility. Additionally, it provides a new way to detect AVC, which expands the application of ThzSI technology in tree disease detection in orchards and lays the foundation for further research.
Collapse
Affiliation(s)
- Yibo Zhou
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaohui Wang
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Keming Chen
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chaoyue Han
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hongpu Guan
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yan Wang
- College of Plant Protection, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Duan D, Zheng W, Shi M, Yi R, Dong Q, Yang J, Ma F, Mao K. MdVQ37 Negatively Regulates Apple Resistance to Valsa Canker via SA-Dependent and SA-Independent Pathways. MOLECULAR PLANT PATHOLOGY 2025; 26:e70064. [PMID: 39967027 PMCID: PMC11835766 DOI: 10.1111/mpp.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Apple Valsa canker is one of the major fungal diseases adversely affecting the apple industry. Valine-glutamine motif-containing proteins (VQs) are a kind of plant transcription regulation cofactor, which are involved in regulating the growth and development of plants and their defence responses. Yet little is known about the role of VQs in the biotic stress response of woody plants, especially in apple trees. Recently, we identified MdVQ37 as a negative regulator of apple resistance to Glomerella leaf spot by inhibiting MdWRKY100-mediated salicylic acid (SA) accumulation via protein interaction. Here we found that MdVQ37 expression was induced significantly by Valsa mali infection. Overexpressing MdVQ37 in apple increased its susceptibility to V. mali, accompanied by a reduction in H2O2 accumulation along with the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), chitinase and β-1,3-glucanase. Meanwhile, MdVQ37 overexpression increased the expression of two SA catabolic genes, MdS5H1 and MdS5H2, resulting in a greater accumulation of the SA metabolite 2,5-dihydroxybenzoic acid (2,5-DHBA), but a decreased SA content and less signalling in transgenic plants. MdPER3, a peroxidase-encoding gene, was identified as a direct target of MdWRKY100. Analysis of transcriptional regulation activity showed that MdVQ37 inhibited the binding and transcriptional ability of MdWRKY100 on the MdPER3 promoter, thereby reducing antioxidant enzyme activity and weakening the Valsa canker resistance. Overall, our results show that MdVQ37 negatively regulates apple defence against V. mali through both SA-dependent and SA-independent pathways. Our findings provide novel insight into the mechanisms by which the VQ-WRKY complex modulates plant defence responses against pathogens.
Collapse
Affiliation(s)
- Dingyue Duan
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Wenqian Zheng
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Mingrui Shi
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Ran Yi
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Qinglong Dong
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Jie Yang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| | - Ke Mao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A & F UniversityYanglingShaanxiChina
| |
Collapse
|
4
|
Meng Y, Li J, Yuan W, Liu R, Xu L, Huang L. Pseudomonas thivervalensis K321, a promising and effective biocontrol agent for managing apple Valsa canker triggered by Valsa mali. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106095. [PMID: 39277406 DOI: 10.1016/j.pestbp.2024.106095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) have been reported to suppress various diseases as potential bioagents. It can inhibit disease occurrence through various means such as directly killing pathogens and inducing systemic plant resistance. In this study, a bacterium isolated from soil showed significant inhibition of Valsa mali. Morphological observations and phylogenetic analysis identified the strain as Pseudomonas thivervalensis, named K321. Plate confrontation assays demonstrated that K321 treatment severely damaged V. mali growth, with scanning electron microscopy (SEM) observations showing severe distortion of hyphae due to K321 treatment. In vitro twigs inoculation experiments indicated that K321 had good preventive and therapeutic effects against apple Valsa canker (AVC). Applying K321 on apples significantly enhanced the apple inducing systemic resistance (ISR), including induced expression of apple ISR-related genes and increased ISR-related enzyme activity. Additionally, applying K321 on apples can activate apple MAPK by enhancing the phosphorylation of MPK3 and MPK6. In addition, K321 can promote plant growth by solubilizing phosphate, producing siderophores, and producing 3-indole-acetic acid (IAA). Application of 0.2% K321 increased tomato plant height by 53.71%, while 0.1% K321 increased tomato fresh weight by 59.55%. Transcriptome analysis revealed that K321 can inhibit the growth of V. mali by disrupting the integrity of its cell membrane through inhibiting the metabolism of essential membrane components (fatty acids) and disrupting carbohydrate metabolism. In addition, transcriptome analysis also showed that K321 can enhance plant resistance to AVC by inducing ISR-related hormones and MAPK signaling, and application of K321 significantly induced the transcription of plant growth-related genes. In summary, an excellent biocontrol strain has been discovered that can prevent AVC by inducing apple ISR and directly killing V. mali. This study indicated the great potential of P. thivervalensis K321 for use as a biological agent for the control of AVC.
Collapse
Affiliation(s)
- Yangguang Meng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Weiwei Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Ronghao Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Liangsheng Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
5
|
Zhu L, Tang L, Tian X, Bai Y, Huang L. Two Polyketide Synthase Genes, VpPKS10 and VpPKS33, Regulated by VpLaeA Are Essential to the Virulence of Valsa pyri. PHYTOPATHOLOGY 2024; 114:2071-2083. [PMID: 38916927 DOI: 10.1094/phyto-12-23-0498-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Valsa pyri, the causal agent of pear canker disease, typically induces cankers on the bark of infected trees and even leads to tree mortality. Secondary metabolites produced by pathogenic fungi play a crucial role in the pathogenic process. In this study, secondary metabolic regulator VpLaeA was identified in V. pyri. VpLaeA was found to strongly affect the pathogenicity, fruiting body formation, and toxicity of secondary metabolites of V. pyri. Additionally, VpLaeA was found to be required for the response of V. pyri to some abiotic stresses. Transcriptome data analysis revealed that many of differentially expressed genes were involved in the secondary metabolite biosynthesis. Among them, about one third of secondary metabolite biosynthesis core genes were regulated by VpLaeA at different periods. Seven differentially expressed secondary metabolite biosynthesis core genes (VpPKS9, VpPKS10, VpPKS33, VpNRPS6, VpNRPS7, VpNRPS16, and VpNRPS17) were selected for knockout. Two modular polyketide synthase genes (VpPKS10 and VpPKS33) that were closely related to the virulence of V. pyri from the above seven genes were identified. Notably, VpPKS10 and VpPKS33 also affected the production of fruiting body of V. pyri but did not participate in the resistance of V. pyri to abiotic stresses. Overall, this study demonstrates the multifaceted biological functions of VpLaeA in V. pyri and identifies two toxicity-associated polyketide synthase genes in Valsa species fungi for the first time.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiangrong Tian
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yayuan Bai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- Tarim University, Alar 843300, Xingjiang Uyghur Autonomous Region, China
| |
Collapse
|
6
|
Han P, Zhang R, Li R, Li F, Huang L. Identification of an SCF Ubiquitin Ligase Complex that Contributes to Resistance Against Valsa Canker in Apple. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:520-529. [PMID: 38470518 DOI: 10.1094/mpmi-12-23-0206-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
E3 ubiquitin ligases play a critical role in plant disease resistance. Among them, the Skp1-Cullin-F-box protein (SCF) ubiquitin ligase complex is the largest family and regulates the ubiquitination of a wide range of proteins. Apple Valsa canker (AVC) is a fungal disease of apple trees caused by the fungus Valsa mali, which can lead to significant economic losses. However, the function of the SCF complex in apple resistance to this disease is still largely unknown. In this study, we identified an SCF ubiquitin ligase complex that can enhance resistance to Valsa canker in apple. Disease evaluation experiments demonstrated that MdSkp1 increased apple resistance to AVC. Furthermore, MdSkp1 interacted with an F-box protein, MdSKIP14, and interacted with a cullin-1 protein, MdCUL1, to form an SCF ubiquitin ligase complex. Additionally, we revealed both MdSKIP14 and MdCUL1 as positive regulators of AVC resistance. In conclusion, our results identified an SCF complex capable of contributing to apple resistance against AVC, providing a theoretical basis for apple disease resistance and the sustainable development of the industry. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pengliang Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruotong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fudong Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Gao C, Zhao B, Zhang J, Du X, Wang J, Guo Y, He Y, Feng H, Huang L. Adaptive regulation of miRNAs/milRNAs in tissue-specific interaction between apple and Valsa mali. HORTICULTURE RESEARCH 2024; 11:uhae094. [PMID: 38799130 PMCID: PMC11116833 DOI: 10.1093/hr/uhae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
In plant-pathogen interactions, pathogens display tissue specificity, infecting and causing disease in particular tissues. However, the involvement of microRNAs/microRNA-like RNAs (miRNAs/milRNAs) in tissue-specific regulation during plant-pathogen interactions remains largely unexplored. This study investigates the differential expression of miRNAs/milRNAs, as well as their corresponding target genes, in interactions between Valsa mali (Vm) and different apple tissues. The results demonstrated that both apple miRNAs and Vm milRNAs exhibited distinct expression profiles when Vm infected bark and leaves, with functionally diverse corresponding target genes. Furthermore, one apple miRNA (Mdo-miR482a) and one Vm milRNA (Vm-milR57) were identified as exhibiting tissue-specific expression in interactions between Vm and apple bark or leaves. Mdo-miR482a was exclusively up-regulated in response to Vm infection in bark and target a nucleotide-binding leucine-rich repeat (NLR) gene of apple. When Mdo-miR482a was transiently over-expressed or silenced, the resistance was significantly reduced or improved. Similarly, transient expression of the NLR gene also showed an increase in resistance. Vm-milR57 could target two essential pathogenicity-related genes of Vm. During Vm infection in bark, the expression of Vm-milR57 was down-regulated to enhance the expression of the corresponding target gene to improve the pathogenicity. The study is the first to reveal tissue-specific characteristics of apple miRNAs and Vm milRNAs in interactions between Vm and different apple tissues, providing new insights into adaptive regulation in tissue-specific interactions between plants and fungi.
Collapse
Affiliation(s)
- Chengyu Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Binsen Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanting He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Zhang Y, Lu Y, Jin Z, Li B, Wu L, He Y. Antifungal mechanism of cell-free supernatant produced by Trichoderma virens and its efficacy for the control of pear Valsa canker. Front Microbiol 2024; 15:1377683. [PMID: 38694806 PMCID: PMC11061385 DOI: 10.3389/fmicb.2024.1377683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Pear Valsa canker, caused by Valsa pyri (V. pyri), poses a major threat to pear production. We aimed to assess the effectiveness of the cell-free supernatant (CFS) produced by Trichoderma virens (T. virens) to control the development of pear Valsa canker and reveal the inhibitory mechanism against the pathogenic fungi. Results Using morphological characteristics and phylogenetic analysis, the pathogen G1H was identified as V. pyri, and the biocontrol fungus WJ561 was identified as Trichoderma virens. CFS derived from WJ561 exhibited strong inhibition of mycelial growth and was capable of reducing the pathogenicity of V. pyri on pear leaves and twigs. Scanning electron microscopy (SEM) observations revealed deformations and shrinkages in the fungal hyphae treated with CFS. The CFS also destroyed the hyphal membranes leading to the leakage of cellular contents and an increase in the malondialdehyde (MDA) content. Additionally, CFS significantly inhibited the activities of catalase (CAT) and superoxide dismutase (SOD), and downregulated the expression of antioxidant defense-related genes in V. pyri, causing the accumulation of reactive oxygen species (ROS). Artesunate, identified as the main component in CFS by liquid chromatograph-mass spectrometry (LC-MS), exhibited antifungal activity against V. pyri. Conclusion Our findings demonstrate the promising potential of T. virens and its CFS in controlling pear Valsa canker. The primary inhibitory mechanism of CFS involves multiple processes, including membrane damage and negatively affecting enzymatic detoxification pathways, consequently leading to hyphal oxidative damage of V. pyri. This study lays a theoretical foundation for the utilization of T. virens to control V. pyri in practical production.
Collapse
Affiliation(s)
- Yang Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoyang Jin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Institute of Farmland Water Conservancy and Soil Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi City, China
| |
Collapse
|
9
|
Azizi R, Ghosta Y, Ahmadpour A. Apple crown and collar canker and necrosis caused by Cytospora balanejica sp. nov. in Iran. Sci Rep 2024; 14:6629. [PMID: 38504125 PMCID: PMC10951349 DOI: 10.1038/s41598-024-57235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Apple is the most important fruit tree in West Azarbaijan province of Iran. In a survey of apple orchards, a disease with crown and collar canker and necrosis symptoms was observed in three young apple orchards in Urmia, affecting 15% and 1% of 'Red Delicious' and 'Golden Delicious' cultivars, respectively. A fungus with typical characteristics of the asexual morph of Cytospora was regularly isolated from the diseased tissues. Morphological characteristics and phylogenetic analyses inferred from the combined dataset of the ITS-rDNA, parts of LSU, tef1-α, rpb2, and act1 genes revealed that the isolates represent a new species of Cytospora, described herein as Cytospora balanejica sp. nov.. The pathogenicity of all isolates was confirmed on apple cv. 'Red Delicious' based on Koch's postulates. Also, the reaction of 12 other apple cultivars was assessed against five selected isolates with the highest virulence. The results showed that except for cv. 'Braeburn', which did not produce any symptoms of the disease, the other 11 cultivars showed characteristic disease symptoms including sunken and discolored bark and wood. The mean length of the discolored area was different among the 11 so-called susceptible cultivars, hence cvs. 'M4' and 'Golden Delicious' showed the highest and the lowest lesion length, respectively. Moreover, the aggressiveness of the five tested isolates was different, and the isolates BA 2-4 and BA 3-1 had the highest and lowest aggressiveness, respectively. Based on our observations on the potential ability of the fungus to cause disease on young and actively growing apple trees, it will be a serious threat to apple cultivation and industry.
Collapse
Affiliation(s)
- Razmig Azizi
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Abdollah Ahmadpour
- Higher Education Center of Shahid Bakeri, Urmia University, Miyandoab, Iran
| |
Collapse
|
10
|
Bozorov TA, Toshmatov ZO, Kahar G, Muhammad SM, Liu X, Zhang D, Aytenov IS, Turakulov KS. Uncovering the antifungal activities of wild apple-associated bacteria against two canker-causing fungi, Cytospora mali and C. parasitica. Sci Rep 2024; 14:6307. [PMID: 38491079 PMCID: PMC10943224 DOI: 10.1038/s41598-024-56969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Cytospora canker has become a devastating disease of apple species worldwide, and in severe cases, it may cause dieback of entire trees. The aim of this study was to characterize the diversity of cultivable bacteria from the wild apple microbiota and to determine their antifungal ability against the canker-causing pathogenic fungi Cytospora mali and C. parasitica. Five bacterial strains belonging to the species Bacillus amyloliquefaciens, B. atrophaeus, B. methylotrophicus, B. mojavensis, and Pseudomonas synxantha showed strong antagonistic effects against pathogenic fungi. Therefore, since the abovementioned Bacillus species produce known antifungal compounds, we characterized the antifungal compounds produced by Ps. synxantha. Bacteria grown on nutritional liquid medium were dehydrated, and the active compound from the crude extract was isolated and analysed via a range of chromatographic processes. High-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance analyses revealed a bioactive antifungal compound, phenazine-1-carboxylic acid (PCA). The minimum inhibitory concentration (MIC) demonstrated that PCA inhibited mycelial growth, with a MIC of 10 mg mL-1. The results suggested that PCA could be used as a potential compound to control C. mali and C. malicola, and it is a potential alternative for postharvest control of canker disease.
Collapse
Affiliation(s)
- Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan.
| | - Zokir O Toshmatov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Surayya M Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China.
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| | - Ilkham S Aytenov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Khurshid S Turakulov
- Laboratory of Molecular and Biochemical Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
11
|
He Y, Tian R, Gao C, Ji L, Liu X, Feng H, Huang L. Biocontrol activity of an endophytic Alternaria alternata Aa-Lcht against apple Valsa canker. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105813. [PMID: 38582585 DOI: 10.1016/j.pestbp.2024.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 04/08/2024]
Abstract
Apple Valsa canker (AVC), caused by Valsa mali, is the most serious branch disease for apples in East Asia. Biocontrol constitutes a desirable alternative strategy to alleviate the problems of orchard environment pollution and pathogen resistance risk. It is particularly important to explore efficient biocontrol microorganism resources to develop new biocontrol technologies and products. In this study, an endophytic fungus, which results in the specific inhibition of the growth of V. mali, was isolated from the twig tissue of Malus micromalus with a good tolerance to AVC. The fungus was identified as Alternaria alternata, based on morphological observations and phylogenetic analysis, and was named Aa-Lcht. Aa-Lcht showed a strong preventive effect against AVC, as determined with an in vitro twig evaluation method. When V. mali was inhibited by Aa-Lcht, according to morphological and cytological observations, the hyphae was deformed and it had more branches, a degradation in protoplasm, breakages in cell walls, and then finally died completely due to mycelium cells. Transcriptome analysis indicated that Aa-Lcht could suppress the growth of V. mali by inhibiting the activity of various hydrolases, destroying carbohydrate metabolic processes, and damaging the pathogen membrane system. It was further demonstrated that Aa-Lcht could colonize apple twig tissues without damaging the tissue's integrity. More importantly, Aa-Lcht could also stimulate the up-regulated expression of defense-related genes in apples together with the accumulation of reactive oxygen species and callose deposition in apple leaf cells. Summarizing the above, one endophytic biocontrol resource was isolated, and it can colonize apple twig tissue and play a biocontrol role through both pathogen inhibition and resistance inducement.
Collapse
Affiliation(s)
- Yanting He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Runze Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chengyu Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China..
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China..
| |
Collapse
|
12
|
Wen X, Yuan J, Bozorov TA, Waheed A, Kahar G, Haxim Y, Liu X, Huang L, Zhang D. An efficient screening system of disease-resistant genes from wild apple, Malus sieversii in response to Valsa mali pathogenic fungus. PLANT METHODS 2023; 19:138. [PMID: 38042829 PMCID: PMC10693133 DOI: 10.1186/s13007-023-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
For molecular breeding of future apples, wild apple (Malus sieversii), the primary progenitor of domesticated apples, provides abundant genetic diversity and disease-resistance traits. Valsa canker (caused by the fungal pathogen Valsa mali) poses a major threat to wild apple population as well as to cultivated apple production in China. In the present study, we developed an efficient system for screening disease-resistant genes of M. sieversii in response to V. mali. An optimal agrobacterium-mediated transient transformation of M. sieversii was first used to manipulate in situ the expression of candidate genes. After that, the pathogen V. mali was inoculated on transformed leaves and stems, and 3 additional methods for slower disease courses were developed for V. mali inoculation. To identify the resistant genes, a series of experiments were performed including morphological (incidence, lesion area/length, fungal biomass), physiological (H2O2 content, malondialdehyde content), and molecular (Real-time quantitative Polymerase Chain Reaction) approaches. Using the optimized system, we identified two transcription factors with high resistance to V. mali, MsbHLH41 and MsEIL3. Furthermore, 35 and 45 downstream genes of MsbHLH41 and MsEIL3 were identified by screening the V. mali response gene database in M. sieversii, respectively. Overall, these results indicate that the disease-resistant gene screening system has a wide range of applications for identifying resistant genes and exploring their immune regulatory networks.
Collapse
Affiliation(s)
- Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
- National Positioning Observation and Research Station of Forest Ecosystem in Yili (XinJiang), Academy of Forestry in Yili, Yili, 835100, China
| | - Jiangxue Yuan
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
13
|
Li Y, Yang H, Ma Y, Cao Y, Xu D, Liu X, Xu G. Discovery of Novel Pyrazol-5-yl-benzamide Derivatives Containing a Thiocyanato Group as Broad-Spectrum Fungicidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17700-17712. [PMID: 37939232 DOI: 10.1021/acs.jafc.3c04869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In an effort to promote the development of new fungicides, a series of 48 novel N-(1-methyl-4-thiocyanato-1H-pyrazol-5-yl)-benzamide derivatives A1-A36 and B1-B12 were designed and synthesized by incorporating a thiocyanato group into the pyrazole ring, and their fungicidal activities were evaluated against Sclerotinia sclerotiorum, Valsa mali, Botrytis cinerea, Rhizoctonia solani, and Phytophthora capsici. In the in vitro antifungal/antioomycete assay, many of the target compounds exhibited good broad-spectrum fungicidal activities. Among them, compound A36 displayed the best antifungal activity against V. mali with an EC50 value of 0.37 mg/L, which was significantly higher than that of the positive controls fluxapyroxad (13.3 mg/L) and dimethomorph (10.3 mg/L). Meanwhile, compound B6 exhibited the best antioomycete activity against P. capsici with an EC50 value of 0.41 mg/L, which was higher than that of azoxystrobin (29.2 mg/L) but lower than that of dimethomorph (0.13 mg/L). Notably, compound A27 displayed broad-spectrum inhibitory activities against V. mali, B. cinerea, R. solani, S. sclerotiorum, and P. capsici with respective EC50 values of 0.71, 1.44, 1.78, 0.87, and 1.61 mg/L. The in vivo experiments revealed that compounds A27 and B6 presented excellent protective and curative efficacies against P. capsici, similar to that of the positive control dimethomorph. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed that compound B6 could change the mycelial morphology and severely damage the ultrastructure of P. capsici. The results of the in vitro SDH enzymatic inhibition experiments indicated that compounds A27 and B6 could effectively inhibit the activity of P. capsici SDH (PcSDH). Furthermore, molecular docking analysis demonstrated significant hydrogen bonds and Pi-S bonding between the target compounds and the key amino acid residues of PcSDH, which could explain the probable mechanism of action. Collectively, these studies provide a valuable approach to expanding the fungicidal spectrum of pyrazol-5-yl-benzamide derivatives.
Collapse
Affiliation(s)
- Yantao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Han Yang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yidan Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Cao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Yang X, Deng P, Liu Q, Meng Y, Dong P, Xu L, Huang L. Exploring the efficacy of carvacrol as a biocontrol agent against pear Valsa canker. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105641. [PMID: 37945237 DOI: 10.1016/j.pestbp.2023.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
Valsa canker, a fungal disease caused by Valsa pyri, poses a significant threat to the pear industry. Currently, chemical control serves as the primary method to control valsa canker. However, the emergence of resistance can pose a challenge to its effectiveness. Biopesticides are a relatively new option for disease control, but there is limited research on their effects on pear Valsa canker. To determine the effectiveness of different biopesticides, we selected 10 common biopesticides to test their inhibition efficacy and impacts on mycelial growth rate and conidial germination. Results showed that carvacrol had very good antifungal activity; therefore its inhibition mechanisms were further investigated. Electron microscopy and transcriptome data analysis were utilized to examine how carvacrol impeded V. pyri by inducing mycelium deformation, wrinkling, and rupture. Carvacrol also affected plant hormones, thus improving plant resistance to the disease. This study lays the groundwork for the utilization of 10 distinct biopesticides to control V. pyri while elucidating how carvacrol harms the pathogen and prompts the plant defense control mechanism.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pujiang Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiuyue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengpeng Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Yuan H, Shi B, Wang Z, Qin G, Hou H, Tu H, Wang L. Exploration of the Biocontrol Activity of Bacillus atrophaeus Strain HF1 against Pear Valsa Canker Caused by Valsa pyri. Int J Mol Sci 2023; 24:15477. [PMID: 37895155 PMCID: PMC10607598 DOI: 10.3390/ijms242015477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Valsa pyri-induced pear Valsa canker is among the most prevalent diseases to impact pear quality and yields. Biocontrol strategies to control plant disease represent an attractive alternative to the application of fungicides. In this study, the potential utility of Bacillus atrophaeus strain HF1 was assessed as a biocontrol agent against pear Valsa canker. Strain HF1 suppressed V. pyri mycelium growth by 61.20% and induced the development of malformed hyphae. Both culture filtrate and volatile organic compounds (VOCs) derived from strain HF1 were able to antagonize V. pyri growth. Treatment with strain HF1-derived culture filtrate or VOCs also induced the destruction of hyphal cell membranes. Headspace mixtures prepared from strain HF1 were analyzed, leading to the identification of 27 potential VOCs. Of the thirteen pure chemicals tested, iberverin, hexanoic acid, and 2-methylvaleraldehyde exhibited the strongest antifungal effects on V. pyri, with respective EC50 values of 0.30, 6.65, and 74.07 μL L-1. Fumigation treatment of pear twigs with each of these three compounds was also sufficient to prevent the development of pear Valsa canker. As such, these results demonstrate that B. atrophaeus strain HF1 and the volatile compounds iberverin, hexanoic acid, and 2-methylvaleraldehyde exhibit promise as novel candidate biocontrol agents against pear Valsa canker.
Collapse
Affiliation(s)
- Hongbo Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Bingke Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Zhuoni Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Genhong Qin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Hui Hou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453004, China
| | - Li Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (H.Y.); (B.S.); (Z.W.); (G.Q.); (H.H.); (H.T.)
| |
Collapse
|
16
|
Xu L, Meng Y, Liu R, Xiao Y, Wang Y, Huang L. Inhibitory effects of Bacillus vallismortis T27 against apple Valsa canker caused by Valsa mali. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105564. [PMID: 37666597 DOI: 10.1016/j.pestbp.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Apple Valsa canker caused by the pathogenic fungus Valsa mali, are one of the most destructive diseases of woody plants worldwide. One rhizosphere microbe strain, designated as T27 and subsequently identified as Bacillus vallismortis based on morphological and phylogenetic analyses, was studied as a potential biocontrol agent. Inoculation assay showed the B. vallismortis T27 suppressed the mycelial growth of V. mali with 81.33% antifungal effect on dual culture plates and caused hyphal deformities, wrinkles. The T27 fermentation broth significantly suppress the fungi's ability to acidify the surrounding environment. The addition of T27 cell-free supernatant (CFS) caused the pH of the fungal culture medium to increase from 3.60 to 5.10. B. vallismortis T27 showed the presence of Surfactin, IturinA and Bacilysin antimicrobial biosynthetic genes by the PCR assay. In addition, the B. vallismortis T27 was able to promote plant growth by producing siderophores and solubilizing phosphorus. The application of 2% fermentation broth of T27 resulted in a significant increase of 55.99% in the height of tomato plants and a 33.03% increase in the fresh weight of tomatoes. Under laboratory and field conditions, the B. vallismortis T27 exhibited strong antifungal activities on detached twigs and intact plants. The treatment of T27 resulted in a 35.9% reduction in lesion area on detached twigs. Furthermore, when applied to intact plants, T27 demonstrated a scar healing rate of 85.7%, surpassing the 77.8% observed in the treatment with tebuconazole. Comparative transcriptome analysis showed down-regulation of the genes associated with the fungal cell wall and cell membrane's synthesis and composition during V. mali treated with the B. vallismortis T27. In addition, gene transcription level analysis under treatment with B. vallismortis T27 revealed a significant increase in the expression levels of genes associated with diterpene biosynthesis, alanine, aspartic acid and glutamate metabolism, and plant hormone signaling in the apple, consistent with qRT-PCR and RNA-seq results. In this study, B. vallismortis T27 isolated from rhizosphere soil and identified as a novel biological control agent against apple Valsa canker. It exhibited effectively control over Valsa canker through multiple mechanisms, including disrupting the fungal cell membrane structure, altering the fungal growth environment, activating the plant MAPK pathway, and inducing upregulation of plant terpene biosynthetic genes. These findings highlight the potential of B. vallismortis T27 as a promising and multifaceted approach for managing apple Valsa canker.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ronghao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingzhu Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Jin J, Diao Y, Xiong X, Yu C, Tian Y, Li C, Liu H. The Regulation of the Growth and Pathogenicity of Valsa mali by the Carbon Metabolism Repressor CreA. Int J Mol Sci 2023; 24:ijms24119252. [PMID: 37298203 DOI: 10.3390/ijms24119252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Carbon catabolite repression (CCR) is a very important mechanism for efficient use of carbon sources in the environment and is necessary for the regulation of fungal growth, development, and pathogenesis. Although there have been extensive studies conducted regarding this mechanism in fungi, little is yet known about the effects of CreA genes on Valsa mali. However, based on the results obtained in this study for the identification of the VmCreA gene in V. mali, it was determined that the gene was expressed at all stages of fungal growth, with self-repression observed at the transcriptional level. Furthermore, the functional analysis results of the gene deletion mutants (ΔVmCreA) and complements (CTΔVmCreA) showed that the VmCreA gene played an important role in the growth, development, pathogenicity, and carbon source utilization of V. mali.
Collapse
Affiliation(s)
- Jiyang Jin
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Key Laboratory of Ecological Protection and Safety Prevention of the Lower Yellow River, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Yufei Diao
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Xiong Xiong
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Key Laboratory of Ecological Protection and Safety Prevention of the Lower Yellow River, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Chengming Yu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yehan Tian
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Chuanrong Li
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Key Laboratory of Ecological Protection and Safety Prevention of the Lower Yellow River, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
18
|
Zhang F, Meng Y, Wang Y, Zhu S, Liu R, Li J, Xu L, Huang L. VmPma1 contributes to virulence via regulation of the acidification process during host infection in Valsa mali. Int J Biol Macromol 2023; 228:123-137. [PMID: 36566811 DOI: 10.1016/j.ijbiomac.2022.12.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Valsa mali is a destructive phytopathogenic fungus that mainly infects apple and pear trees. Infection with V. mali results in host tissue acidification via the generation of citric acid, which promote invasion. Here, two plasma membrane H+-ATPases, VmPma1 and VmPma2, were identified in V. mali. The VmPma1 deletion mutant (∆VmPma1) displayed higher intracellular acid accumulation and a lower growth rate compared to the wild type. In contrast, the VmPma2 deletion mutant (∆VmPma2) showed no obvious phenotypic differences. Meanwhile, loss of VmPma1, but not VmPma2, in V. mali led to a significant decrease in growth under acidic or alkaline conditions compared with WT. More importantly, ∆VmPma1 showed a greater reduction in ATPase hydrolase activity and acidification of the external environment, more sensitivity to abiotic stress, and weaker pathogenicity than ∆VmPma2. This evidence indicates that VmPma1 is the main gene of the two plasma membrane H+-ATPases. Transcriptomic analysis indicated that many metabolic processes regulated by VmPma1 are strictly pH-regulated. Besides, we identified two genes (named VmAgn1p and Vmap1) that contribute to the pathogenicity of V. mali by differentially regulating external acidification capacity. Overall, our findings show that VmPma1 plays a pivotal role in pathogenicity by affecting the acidification of V. mali.
Collapse
Affiliation(s)
- Feiran Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shan Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ronghao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
19
|
Ding Y, Yang Q, Waheed A, Zhao M, Liu X, Kahar G, Haxim Y, Wen X, Zhang D. Genome-wide characterization and functional identification of MYB genes in Malus sieversii infected by Valsa mali. FRONTIERS IN PLANT SCIENCE 2023; 14:1112681. [PMID: 37089647 PMCID: PMC10113540 DOI: 10.3389/fpls.2023.1112681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Among the most important transcription factors in plants, the v-myb avian myeloblastosis viral oncogene homolog (MYB) regulates the expression network of response genes under stresses such as fungal infection. In China, the canker disease Valsa mali threatens the survival of Malus sieversii, an ancestor of cultivated apples. Using the M. sieversii genome, we identified 457 MsMYB and 128 R2R3-MsMYB genes that were randomly distributed across 17 chromosomes. Based on protein sequence and structure, the R2R3-MsMYB genes were phylogenetically divided into 29 categories, and 26 conserved motifs were identified. We further predicted cis-elements in the 2000-kb promoter region of R2R3-MsMYBs based on the genome. Transcriptome analysis of M. sieversii under V. mali infection showed that 27 R2R3-MsMYBs were significantly differentially expressed, indicating their key role in the response to V. mali infection. Using transient transformation, MsMYB14, MsMYB24, MsMYB39, MsMYB78, and MsMYB108, which were strongly induced by V. mali infection, were functionally identified. Among the five MsMYBs, MsMYB14 and MsMYB78 were both important in enhancing resistance to diseases, whereas MsMYB24 inhibited resistance. Based on the results of this study, we gained a better understanding of the MsMYB transcription factor family and laid the foundation for a future research program on disease prevention strategies in M. sieversii.
Collapse
Affiliation(s)
- Yu Ding
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qihang Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Mingqi Zhao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| |
Collapse
|
20
|
Bensaci OA, Aliat T, Berdja R, Popkova AV, Kucher DE, Gurina RR, Rebouh NY. The Use of Mycoendophyte-Based Bioformulations to Control Apple Diseases: Toward an Organic Apple Production System in the Aurès (Algeria). PLANTS (BASEL, SWITZERLAND) 2022; 11:3405. [PMID: 36501444 PMCID: PMC9738539 DOI: 10.3390/plants11233405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The present study aims to investigate the effectiveness of bioformulations based on endophytic fungi to control apple scab and Valsa canker disease in two orchards in the Aurès region (Algeria). In both orchards, the results showed that the treatment of senescent apple leaves by invert emulsions containing Trichoderma longibrachiatum and Chaetomium globosum harmed the ascogenesis of winter forms of Venturia inaequalis by reducing the number of ascospore-ejecting asci, the number of morphologically mature asci, and a considerable increase in the immature asci number. This antifungal activity was more essential in soil-incorporated leaves, showing the importance of the combination of treatments with cultural practices to efficiently control the apple scab disease. Furthermore, the disease incidence decreased by 52.63% and 50.68% in R'haouat and Bouhmama orchards, respectively. Moreover, the treatment of Valsa ceratosperma cankers with a biogel containing the endophytic yeast Metschnikowia sp. led to wound healing varying from 43.52% and 87.97% after 120 days but remained more considerable than conventional treatment with Folicur (tebuconazol). The current results open real opportunities concerning the implementation of eco-friendly and potent apple protection systems.
Collapse
Affiliation(s)
- Oussama A. Bensaci
- Laboratory of Improvement of the Phytosanitary Protection Techniques in Mountainous Agrosystems (LATPPAM), Agronomy Department, Institute of veterinary and Agricultural Sciences, Batna 1 University, Batna 05000, Algeria
| | - Toufik Aliat
- Higher National School of Forests, Khenchela 40000, Algeria
| | - Rafik Berdja
- Laboratory of Improvement of the Phytosanitary Protection Techniques in Mountainous Agrosystems (LATPPAM), Agronomy Department, Institute of veterinary and Agricultural Sciences, Batna 1 University, Batna 05000, Algeria
| | - Anna V. Popkova
- Department of Environmental Management, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Dmitry E. Kucher
- Department of Environmental Management, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Regina R. Gurina
- Department of Environmental Management, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Nazih Y. Rebouh
- Department of Environmental Management, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
21
|
Han P, Li R, Yue Q, Li F, Nie J, Yin Z, Xu M, Guan Q, Huang L. The Apple Receptor-Like Kinase MdSRLK3 Positively Regulates Resistance Against Pathogenic Fungus Valsa mali by Affecting the Ca 2+ Signaling Pathway. PHYTOPATHOLOGY 2022; 112:2187-2197. [PMID: 35509209 DOI: 10.1094/phyto-11-21-0471-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Valsa mali is the main pathogenic fungus that causes the apple Valsa canker, a destructive disease severely threatening apple production in the world. However, the underlying key components involved in resistance against V. mali in apple trees remain largely unexplored. Here, we isolated and functionally characterized a G-type lectin S-receptor-like protein kinase MdSRLK3 from the cultivar Royal Gala derivative line GL-3. qRT-PCR showed that the relative expression of MdSRLK3 in apple branches reached its highest level at 24 h post V. mali inoculation, which was 13.42 times higher than without inoculation. Transient overexpression of MdSRLK3 enhanced apple resistance against V. mali, while transient silencing of MdSRLK3 reduced its resistance against the pathogen. More importantly, stable silencing of MdSRLK3 resulted in reduced resistance against this fungus. Furthermore, we demonstrated that MdSRLK3 positively regulated apple resistance by affecting the Ca2+ signaling pathway, and the regulation was also related to the H2O2 and callose signaling pathways. Overall, our data reveal that MdSRLK3 is a positive regulator of apple immunity.
Collapse
Affiliation(s)
- Pengliang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fudong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
22
|
Jing Y, Zhan M, Li C, Pei T, Wang Q, Li P, Ma F, Liu C. The apple FERONIA receptor-like kinase MdMRLK2 negatively regulates Valsa canker resistance by suppressing defence responses and hypersensitive reaction. MOLECULAR PLANT PATHOLOGY 2022; 23:1170-1186. [PMID: 35412700 PMCID: PMC9276949 DOI: 10.1111/mpp.13218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 05/05/2023]
Abstract
Valsa canker, caused by the fungus Valsa mali, is one of the most destructive diseases of apple trees in China and other East Asian countries. The plant receptor-like kinase FERONIA is involved in plant cell growth, development, and immunity. However, little is known about the function of FERONIA in apple defence against V. mali. In this study, we found that MdMRLK2 was highly induced by V. mali in twigs of V. mali-susceptible Malus mellana but not in those of the resistant species Malus yunnaensis. 35S:MdMRLK2 apple plants showed compromised resistance relative to wild-type (WT) plants. Further analyses indicated that 35S:MdMRLK2 apple plants had enhanced abscisic acid (ABA) levels and reduced salicylic acid (SA) levels relative to the WT on V. mali infection. MdMRLK2 overexpression also suppressed polyphenol accumulation and inhibited the activities of phenylalanine ammonia-lyase (PAL), β-1,3-glucanase (GLU), and chitinase (CHT) during V. mali infection. Moreover, MdMRLK2 interacted with MdHIR1, a hypersensitive-induced response protein, and suppressed the MdHIR1-mediated hypersensitive reaction (HR), probably by impairing MdHIR1 self-interaction. Collectively, these findings demonstrate that overexpression of MdMRLK2 compromises Valsa canker resistance, probably by (a) altering ABA and SA levels, (b) suppressing polyphenol accumulation, (c) inhibiting PAL, GLU, and CHT activities, and (d) blocking MdHIR1-mediated HR by disrupting MdHIR1 self-interaction.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
23
|
Li T, Huang W, Yu H. Synergetic Antimicrobial Effect of Silver Nanoparticles Conjugated with Iprodione against Valsa mali. MATERIALS 2022; 15:ma15155147. [PMID: 35897579 PMCID: PMC9332150 DOI: 10.3390/ma15155147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Apple tree canker induced by Valsamali is a vital disease in apple production around the world, and it highlyimpacts the development of apple industry. It is of great significance to study the inhibition effect of common fungicides and develop new fungistats for comprehensive control of apple tree canker. In this experiment, the inhibition activity of five fungicides, including mancozeb, metalaxyl, iprodione, prochloraz, and difenoconazole along with biosynthesized nanosilver against V. mali, were measured with the mycelium growth rate and agar well diffusion methods. The results showed that iprodione exhibited the best inhibitory effect, the median inhibition concentration (IC50) of iprodione and nanosilver was 0.62 μg.mL−1 and 45.50 μg.mL−1, the suppression rate achieved 67.93% at 200 μg.mL−1 of nanosilver. Moreover, a remarkable additive and synergistic antimicrobial effect was verified when silver nanoparticles were conjugated with iprodione at 9:1, 8:2, 7:3, and 6:4 (v/v), and the toxicity ratio was 1.04, 1.13, 1.01, and 0.98, respectively. It is proven that biosynthesized silver nanoparticles could effectively inhibit Valsamali, and it is possible to develop and screen silver nanoparticle-based nano pesticides to manage plant diseases synthetically.
Collapse
Affiliation(s)
- Tao Li
- College of Resources and Environment, Anhui Science and Technology University, Donghua Road 9, Chuzhou 233100, China;
| | - Weidong Huang
- College of Agriculture, Anhui Science and Technology University, Donghua Road 9, Chuzhou 233100, China
- Correspondence: (W.H.); (H.Y.)
| | - Haibing Yu
- College of Agriculture, Anhui Science and Technology University, Donghua Road 9, Chuzhou 233100, China
- Correspondence: (W.H.); (H.Y.)
| |
Collapse
|
24
|
Yuan H, Yuan M, Shi B, Wang Z, Huang T, Qin G, Hou H, Wang L, Tu H. Biocontrol activity and action mechanism of Paenibacillus polymyxa strain Nl4 against pear Valsa canker caused by Valsa pyri. Front Microbiol 2022; 13:950742. [PMID: 35935238 PMCID: PMC9354778 DOI: 10.3389/fmicb.2022.950742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pear Valsa canker caused by Valsa pyri is among the most destructive diseases of pear, which causes significant economic loss. The present study was developed to explore the biocontrol efficiency and underlying antagonistic mechanism of Paenibacillus polymyxa strain Nl4 against V. pyri. P. polymyxa strain Nl4, one of the 120 different endophytic bacterial strains from pear branches, exhibited strong inhibitory effects against the mycelial growth of V. pyri and caused hyphal malformation. Culture filtrate derived from strain Nl4 was able to effectively suppress mycelial growth of V. pyri, and was found to exhibit strong protease, cellulase and β-1, 3-glucanase activity. Through re-isolation assay, strain Nl4 was confirmed to be capable of colonizing and surviving in pear branch. Treatment with strain NI4 effectively protected against pear Valsa canker symptoms on detached pear twigs inoculated with V. pyri. Moreover, strain Nl4 promoted enhanced plant growth probably through the solubilization of phosphorus. Comparative transcriptomic analyses revealed that strain NI4 was able to suppress V. pyri growth in large part through the regulation of the expression of membrane- and energy metabolism-related genes in this pathogen. Further transcriptomic analyses of pear trees indicated that strain NI4 inoculation was associated with changes in the expression of genes associated with secondary metabolite biosynthesis, signal transduction, and cutin, suberine, and wax biosynthesis. Together, these data highlighted P. polymyxa strain Nl4 as a promising biocontrol agent against pear Valsa canker and investigated the possible mechanisms of strain Nl4 on control of this devastating disease.
Collapse
|
25
|
He F, Kange AM, Yang J, Xiao J, Wang R, Yang L, Jia Y, Fu ZQ, Zhao Y, Liu F. The Transcription Factor VpxlnR Is Required for the Growth, Development, and Virulence of the Fungal Pathogen Valsa pyri. Front Microbiol 2022; 13:784686. [PMID: 35308334 PMCID: PMC8928461 DOI: 10.3389/fmicb.2022.784686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pears (Pyrus sp.) are widely cultivated in China, and their yield accounts for more than 60% of global pear production. The fungal pathogen Valsa pyri is a major causal agent of pear canker disease, which results in enormous losses of pear production in northern China. In this study, we characterized a Zn2Cys6 transcription factor that contains one GAL4 domain and a fungal-trans domain, which are present in VpxlnR. The vpxlnR gene expression was upregulated in the invasion stage of V. pyri. To investigate its functions, we constructed gene deletion mutants and complementary strains. We observed that the growth of the vpxlnR mutants was reduced on potato dextrose agar (PDA), Czapek plus glucose or sucrose compared with that of the wild-type strain. Additionally, vpxlnR mutants exhibited loss of function in fruiting body formation. Moreover, vpxlnR mutants were more susceptible to hydrogen peroxide (H2O2) and salicylic acid (SA) and were reduced in their virulence at the early infection stage. According to a previous study, VpxlnR-interacting motifs containing NRHKGNCCGM were searched in the V. pyri genome, and we obtained 354 target genes, of which 148 genes had Clusters of Orthologous Groups (COG) terms. PHI-BLAST was used to identify virulence-related genes, and we found 28 hits. Furthermore, eight genes from the 28 PHI-BLAST hits were further assessed by yeast one-hybrid (Y1H) assays, and five target genes, salicylate hydroxylase (VP1G_09520), serine/threonine-protein kinase (VP1G_03128), alpha-xylosidase (VP1G_06369), G-protein beta subunit (VP1G_02856), and acid phosphatase (VP1G_03782), could interact with VpxlnR in vivo. Their transcript levels were reduced in one or two vpxlnR mutants. Taken together, these findings imply that VpxlnR is a key regulator of growth, development, stress, and virulence through controlling genes involved in signaling pathways and extracellular enzyme activities in V. pyri. The motifs interacting with VpxlnR also provide new insights into the molecular mechanism of xlnR proteins.
Collapse
Affiliation(s)
- Feng He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Alex-Machio Kange
- Department of Agriculture and Natural Resource, Bomet University College, Bomet, Kenya
| | - Jie Yang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jiaxin Xiao
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Lu Yang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yifan Jia
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Yancun Zhao,
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Fengquan Liu,
| |
Collapse
|
26
|
Xu M, Li G, Guo Y, Gao Y, Zhu L, Liu Z, Tian R, Gao C, Han P, Wang N, Guo F, Bao J, Jia C, Feng H, Huang L. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes. THE NEW PHYTOLOGIST 2022; 233:2503-2519. [PMID: 34981514 DOI: 10.1111/nph.17945] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Small RNAs (sRNAs) play important roles in various biological processes by silencing their corresponding target genes in most eukaryotes. However, cross-kingdom regulation mediated by fungal microRNA-like RNAs (milRNAs) in plant-pathogen interactions is still largely unknown. Using molecular, genetic, histological, and biochemical approaches, we found that the apple tree Valsa canker pathogen Valsa mali milRNA Vm-milR1 could suppress the host immunity by silencing two host receptor-like kinase genes, MdRLKT1 and MdRLKT2. Vm-milR1 was highly induced during V. mali infection. Deletion of Vm-milR1 precursor abolished the generation of Vm-milR1 and reduced the virulence of V. mali. Inoculation of Vm-milR1 deletion mutants induced the host defence responses, including reactive oxygen species (ROS) accumulation, callose deposition, and high expression of defence-related genes. Furthermore, Vm-milR1 was confirmed to be able to suppress the expression of MdRLKT1 and MdRLKT2 in a sequence-specific manner. Moreover, overexpression of either MdRLKT1 or MdRLKT2 enhanced apple resistance to V. mali by activating the host defence responses. Furthermore, knockdown of MdRLKT1 or MdRLKT2 compromised the host resistance to V. mali. Our study revealed that V. mali was equipped with Vm-milR1 as an sRNA effector to silence host receptor-like kinase genes, suppress the host defence responses, and facilitate pathogen infection.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangyao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lihua Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoyang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengliang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiyuan Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
27
|
Potential Value of Wood Tar as a Natural Fungicide against Valsa mali. Molecules 2022; 27:molecules27051531. [PMID: 35268633 PMCID: PMC8911778 DOI: 10.3390/molecules27051531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The Valsa canker caused by Valsa mali seriously harmed the production of East Asian apples and caused very significant economic losses. Considering the chemical residues and the improvement of people’s awareness of environmental protection, there is a need for screening new green pesticides for the control of Valsa canker. Therefore, we conducted systematic evaluations on the antifungal activity of wood tar. In this research, the effective concentration (EC50) of six strains of V. mali to wood tar was determined, and the EC50 ranged from 69.54 to 92.81 μg/mL. After treatment with wood tar, the hyphae of V. mali broke, swelled, and deformed; the permeability of the cell membrane increased; and the activity of pectinase reduced. Moreover, the expression levels of five genes related to pectinase also decreased significantly. In addition, the activities of phenylalanine ammonia lyase (PAL) and peroxidase (POD) of apple leaves treated with wood tar also increased. On detached apple branches, wood tar also showed therapeutic and protective activities. In the 2016–2019 field experiments, wood tar also showed good efficacy against Valsa canker and promoted the formation of callus. (In the experiments from 2016 to 2019, it can be seen that the control effect of 50% wood tar and 100% wood tar in the field is above 75% and promoted the formation of callus.) This study is the first to report the bidirectional efficacy of wood tar against Valsa mali and for trunk wound healing. The above results evidenced that wood tar has great potential to be developed as a natural alternative to commercial fungicides for the management of apple Valsa canker.
Collapse
|
28
|
Mechanisms of Trichoderma longibrachiatum T6 Fermentation against Valsa mali through Inhibiting Its Growth and Reproduction, Pathogenicity and Gene Expression. J Fungi (Basel) 2022; 8:jof8020113. [PMID: 35205867 PMCID: PMC8875883 DOI: 10.3390/jof8020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022] Open
Abstract
Apple Valsa canker is one of the most serious diseases, having caused significant apple yield and economic loss in China. However, there is still no effective biological methods for controlling this disease. Our present study focused on the inhibitory activity and mechanisms of Trichoderma longibrachiatum (T6) fermentation on Valsa mali that causes apple Valsa canker (AVC). Our results showed that the T6 fermentation exhibited effective antifungal activity on the mycelial growth and conidia germination of V. mali, causing mycelium malformation and the hyphal disintegrating in comparison to the control. The activity of pathogenically related enzymes that are secreted from V. mali and the expression level of gene of V. mali were significantly inhibited and downregulated by treatment with T6 fermentation. In addition, the lesion area and number of pycnidia of V. mali formed on the branches were significantly reduced after treatment with the T6 fermentation through the pathogenicity test on the detached branches. Our results indicate that the possible mechanism of T6 fermentation against V. mali occurs through inhibiting its growth and reproduction, the pathogenic enzyme activity, and its related gene expression.
Collapse
|
29
|
Wen D, Yu L, Xiong D, Tian C. Genome-Wide Identification of bZIP Transcription Factor Genes and Functional Analyses of Two Members in Cytospora chrysosperma. J Fungi (Basel) 2021; 8:jof8010034. [PMID: 35049973 PMCID: PMC8778692 DOI: 10.3390/jof8010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) family, one of the largest and the most diverse TF families, is widely distributed across the eukaryotes. It has been described that the bZIP TFs play diverse roles in development, nutrient utilization, and various stress responses in fungi. However, little is known of the bZIP members in Cytospora chrysosperma, a notorious plant pathogenic fungus, which causes canker disease on over 80 woody plant species. In this study, 26 bZIP genes were systematically identified in the genome of C. chrysosperma, and two of them (named CcbZIP05 and CcbZIP23) significantly down-regulated in CcPmk1 deletion mutant (a pathogenicity-related mitogen-activated protein kinase) were selected for further analysis. Deletion of CcbZIP05 or CcbZIP23 displayed a dramatic reduction in fungal growth but showed increased hypha branching and resistance to cell wall inhibitors and abiotic stresses. The CcbZIP05 deletion mutants but not CcbZIP23 deletion mutants were more sensitive to the hydrogen peroxide compared to the wild-type and complemented strains. Additionally, the CcbZIP23 deletion mutants produced few pycnidia but more pigment. Remarkably, both CcbZIP05 and CcbZIP23 deletion mutants were significantly reduced in fungal virulence. Further analysis showed that CcbZIP05 and CcbZIP23 could regulate the expression of putative effector genes and chitin synthesis-related genes. Taken together, our results suggest that CcbZIP05 and CcbZIP23 play important roles in fungal growth, abiotic stresses response, and pathogenicity, which will provide comprehensive information on the CcbZIP genes and lay the foundation for further research on the bZIP members in C. chrysosperma.
Collapse
Affiliation(s)
- Dasen Wen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
| | - Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.X.); (C.T.)
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (D.W.); (L.Y.)
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.X.); (C.T.)
| |
Collapse
|
30
|
Dou Y, Yang Y, Mund NK, Wei Y, Liu Y, Wei L, Wang Y, Du P, Zhou Y, Liesche J, Huang L, Fang H, Zhao C, Li J, Wei Y, Chen S. Comparative Analysis of Herbaceous and Woody Cell Wall Digestibility by Pathogenic Fungi. Molecules 2021; 26:molecules26237220. [PMID: 34885803 PMCID: PMC8659149 DOI: 10.3390/molecules26237220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.
Collapse
Affiliation(s)
- Yanhua Dou
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yan Yang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China;
| | - Nitesh Kumar Mund
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yanping Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yisong Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Linfang Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yifan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Panpan Du
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yunheng Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Lili Huang
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Hao Fang
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Chen Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yahong Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Y.W.); (S.C.); Tel.: +86-029-87091021 (S.C.)
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.D.); (N.K.M.); (Y.W.); (Y.L.); (L.W.); (Y.W.); (P.D.); (Y.Z.); (J.L.); (H.F.); (C.Z.); (J.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Xianyang 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Xianyang 712100, China
- Correspondence: (Y.W.); (S.C.); Tel.: +86-029-87091021 (S.C.)
| |
Collapse
|
31
|
Guo F, Liang J, Xu M, Zhang G, Huang L, Feng H. A Novel DCL2-Dependent Micro-Like RNA Vm-PC-3p-92107_6 Affects Pathogenicity by Regulating the Expression of Vm- VPS10 in Valsa mali. Front Microbiol 2021; 12:721399. [PMID: 34759897 PMCID: PMC8575173 DOI: 10.3389/fmicb.2021.721399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Dicer proteins are mainly responsible for generating small RNAs (sRNAs), which are involved in gene silencing in most eukaryotes. In previous research, two DCL proteins in Valsa mali, the pathogenic fungus causing apple tree Valsa canker, were found associated with both the pathogenicity and generation of sRNAs. In this study, the differential expression of small interfering RNAs (siRNAs) and miRNA-like RNAs (milRNAs) was analyzed based on the deep sequencing of the wild type and Vm-DCL2 mutant, respectively. Overall, the generation of 40 siRNAs and 18 milRNAs was evidently associated with Vm-DCL2. The target genes of milRNAs were then identified using degradome sequencing; according to the prediction results, most candidate targets are related to pathogenicity. Further, expression of Vm-PC-3p-92107_6 was confirmed in the wild type but not in the Vm-DCL2 mutant. Moreover, the pathogenicity of Vm-PC-3p-92107_6 deletion mutants (ΔVm-PC-3p-92107_6) and the over-expression transformants (Vm-PC-3p-92107_6-OE) was significantly increased and decreased, respectively. Based on those degradome results, vacuolar protein sorting 10 (Vm-VPS10) was identified as the target of Vm-PC-3p-92107_6. Co-expression analysis in tobacco leaves further confirmed that Vm-PC-3p-92107_6 could suppress the expression of Vm-VPS10. Meanwhile, the expression levels of Vm-PC-3p-92107_6 and Vm-VPS10 displayed divergent trends in ΔVm-PC-3p-92107_6 and Vm-PC-3p-92107_6-OE, respectively. Perhaps most importantly, ΔVm-VPS10 featured a significant reduction in pathogenicity. Taken together, our results indicate that a DCL2-dependent milRNA Vm-PC-3p-92107_6 plays roles in pathogenicity by regulating the expression of Vm-VPS10. This study lays a foundation for the comprehensive analysis of pathogenic mechanisms of V. mali and deepens our understanding of the generation and function of fungal sRNA.
Collapse
Affiliation(s)
- Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiahao Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Gao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Liu J, Nie J, Chang Y, Huang L. Nep1-like Proteins from Valsa mali Differentially Regulate Pathogen Virulence and Response to Abiotic Stresses. J Fungi (Basel) 2021; 7:830. [PMID: 34682251 PMCID: PMC8539816 DOI: 10.3390/jof7100830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 01/10/2023] Open
Abstract
Necrosis and ethylene-inducing peptide 1(Nep1)-like protein (NLP) is well known for its cytotoxicity and immunogenicity on dicotyledonous, and it has attracted large attention due to its gene expansion and functional diversification in numerous phytopathogens. Here, two NLP family proteins, VmNLP1 and VmNLP2, were identified in the pathogenic fungus Valsa mali. We showed that VmNLP2 but not VmNLP1 induced cell death when transiently expressed in Nicotiana benthamiana. VmNLP2 was also shown to induce cell death in apple leaves via the treatment of the Escherichia coli-produced recombinant protein. VmNLP1 and VmNLP2 transcripts were drastically induced at the early stage of V. mali infection, whereas only VmNLP2 was shown to be essential for pathogen virulence. We also found that VmNLP1 and VmNLP2 are required for maintaining the integrity of cell membranes, and they differentially contribute to V. mali tolerance to salt- and osmo-stresses. Notably, multiple sequence alignment revealed that the second histidine (H) among the conserved heptapeptide (GHRHDWE) of VmNLP2 is mutated to tyrosine (Y). When this tyrosine (Y) was substituted by histidine (H), the variant displayed enhanced cytotoxicity in N. benthamiana, as well as enhanced virulence on apple leaves, suggesting that the virulence role of VmNLP2 probably correlates to its cytotoxicity activity. We further showed that the peptide among VmNLP2, called nlp25 (VmNLP2), triggered strong immune response in Arabidopsis thaliana. This work demonstrates that NLPs from V. mali involve multiple biological roles, and shed new light on how intricately complex the functions of NLP might be.
Collapse
Affiliation(s)
| | | | | | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China; (J.L.); (J.N.); (Y.C.)
| |
Collapse
|
33
|
Zhang Y, Zhou P, Bozorov TA, Zhang D. Application of CRISPR/Cas9 technology in wild apple (Malus sieverii) for paired sites gene editing. PLANT METHODS 2021; 17:79. [PMID: 34281579 PMCID: PMC8287690 DOI: 10.1186/s13007-021-00769-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/14/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Xinjiang wild apple is an important tree of the Tianshan Mountains, and in recent years, it has undergone destruction by many biotic and abiotic stress and human activities. It is necessary to use new technologies to research its genomic function and molecular improvement. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability varies depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. RESULTS In this study, we used 2 systems of vectors with paired sgRNAs targeting to MsPDS. As expected, we successfully induced the albino phenotype of calli and buds in both systems. CONCLUSIONS We conclude that CRISPR/Cas9 is a powerful system for editing the wild apple genome and expands the range of plants available for gene editing.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Stress Resistant Plant Conservation and Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
34
|
Biological Control of Pear Valsa Canker Caused by Valsa pyri Using Penicillium citrinum. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Valsa canker caused by Valsa pyri is one of the most destructive diseases of commercial pear. For the present analysis, 29 different endophytic fungal strains were isolated from the branches of a healthy pear tree. In dual culture assays, strain ZZ1 exhibited robust antifungal activity against all tested pathogens including Valsa pyri. Microscopic analyses suggested that following co-culture with ZZ1, the hyphae of V. pyri were ragged, thin, and ruptured. ZZ1 also induced significant decreases in lesion length and disease incidence on detached pear branches inoculated with V. pyri. ZZ1 isolate-derived culture filtrates also exhibited antifungal activity against V. pyri, decreasing mycelial growth and conidium germination and inhibiting V. pyri-associated lesion development on pear branches. These results suggest that the ZZ1 isolate has the potential for use as a biological control agent against V. pyri. The strain was further identified as Penicillium citrinum based on its morphological characteristics and molecular analyses. Overall, these data highlight a potentially valuable new biocontrol resource for combating pear Valsa canker.
Collapse
|
35
|
Yang S, Dai R, Salaipeth L, Huang L, Liu J, Andika IB, Sun L. Infection of Two Heterologous Mycoviruses Reduces the Virulence of Valsa mali, a Fungal Agent of Apple Valsa Canker Disease. Front Microbiol 2021; 12:659210. [PMID: 34113326 PMCID: PMC8186502 DOI: 10.3389/fmicb.2021.659210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Mycovirus infection has been widely shown to attenuate the virulence of phytopathogenic fungi. Valsa mali is an agriculturally important fungus that causes Valsa canker disease in apple trees. In this study, two unrelated mycoviruses [Cryphonectria hypovirus 1 (CHV1, genus Hypovirus, and single-stranded RNA) and Mycoreovirus 1 (MyRV1, genus Mycoreovirus, double-stranded RNA)] that originated from Cryphonectria parasitica (chestnut blight fungus) were singly or doubly introduced into V. mali via protoplast fusion. CHV1 and MyRV1 stably infected V. mali and caused a reduction in fungal vegetative growth and virulence. Co-infection of both viruses further reduced the virulence of V. mali but compromised the stability of CHV1 infection and horizontal transmission through hyphal anastomosis. Infections of MyRV1 and, to a lesser extent, CHV1 up-regulated the transcript expression of RNA silencing-related genes in V. mali. The accumulation of CHV1 (but not MyRV1) was elevated by the knockdown of dcl2, a key gene of the RNA silencing pathway. Similarly, the accumulation of CHV1 and the efficiency of the horizontal transmission of CHV1 during co-infection was restored by the knockdown of dcl2. Thus, CHV1 and MyRV1 are potential biological control agents for apple Valsa canker disease, but co-infection of both viruses has a negative effect on CHV1 infection in V. mali due to the activation of antiviral RNA silencing by MyRV1 infection.
Collapse
Affiliation(s)
- Shian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Ruoyin Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Jie Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
36
|
Chaliha C, Kaladhar VC, Doley R, Verma PK, Kumar A, Kalita E. Bipartite molecular approach for species delimitation and resolving cryptic speciation of Exobasidium vexans within the Exobasidium genus. Comput Biol Chem 2021; 92:107496. [PMID: 33930740 DOI: 10.1016/j.compbiolchem.2021.107496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Exobasidium vexans, a basidiomycete pathogen, is the causal organism of blister blight disease in tea. The molecular identification of the pathogen remains a challenge due to the limited availability of genomic data in sequence repositories and cryptic speciation within its genus Exobasidium. In this study, the nuclear internal transcribed spacer rDNA region (ITS) based DNA barcode was developed for E. vexans, to address the problem of molecular identification within the background of cryptic speciation. The isolation of E. vexans strain was confirmed through morphological studies followed by molecular identification utilizing the developed ITS barcode. Phylogenetic analysis based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI) confirmed the molecular identification of the pathogen as E. vexans strain. Further, BI analysis using BEAST mediated the estimation of the divergence time and evolutionary relationship of E. vexans within genus Exobasidium. The speciation process followed the Yule diversification model wherein the genus Exobasidium is approximated to have diverged in the Paleozoic era. The study thus sheds light on the molecular barcode-based species delimitation and evolutionary relationship of E. vexans within its genus Exobasidium.
Collapse
Affiliation(s)
- Chayanika Chaliha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - V Chandra Kaladhar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Eeshan Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India; Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| |
Collapse
|
37
|
Feng H, Xu M, Gao Y, Liang J, Guo F, Guo Y, Huang L. Vm-milR37 contributes to pathogenicity by regulating glutathione peroxidase gene VmGP in Valsa mali. MOLECULAR PLANT PATHOLOGY 2021; 22:243-254. [PMID: 33278058 PMCID: PMC7814965 DOI: 10.1111/mpp.13023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 05/22/2023]
Abstract
MicroRNAs play important roles in various biological processes by regulating their corresponding target genes. However, the function and regulatory mechanism of fungal microRNA-like RNAs (milRNAs) are still largely unknown. In this study, a milRNA (Vm-milR37) was isolated and identified from Valsa mali, which causes the most serious disease on the trunk of apple trees in China. Based on the results of deep sequencing and quantitative reverse transcription PCR, Vm-milR37 was found to be expressed in the mycelium, while it was not expressed during the V. mali infection process. Overexpression of Vm-milR37 did not affect vegetative growth, but significantly decreased pathogenicity. Based on degradome sequencing, the target of Vm-milR37 was identified as VmGP, a glutathione peroxidase. The expression of Vm-milR37 and VmGP showed a divergent trend in V. mali-apple interaction samples and Vm-milR37 overexpression transformants. The expression of VmGP could be suppressed significantly by Vm-milR37 when coexpressed in tobacco leaves. Deletion of VmGP showed significantly reduced pathogenicity compared with the wild type. VmGP deletion mutants showed more sensitivity to hydrogen peroxide. Apple leaves inoculated with Vm-milR37 overexpression transformants and VmGP deletion mutant displayed increased accumulation of reactive oxygen species compared with the wild type. Thus, Vm-milR37 plays a critical role in pathogenicity by regulating VmGP, which contributes to the oxidative stress response during V. mali infection. These results provide important evidence to define the roles of milRNAs and their corresponding target genes in pathogenicity.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiahao Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
38
|
Feng Y, Yin Z, Wu Y, Xu L, Du H, Wang N, Huang L. LaeA Controls Virulence and Secondary Metabolism in Apple Canker Pathogen Valsa mali. Front Microbiol 2020; 11:581203. [PMID: 33250871 PMCID: PMC7674932 DOI: 10.3389/fmicb.2020.581203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/07/2020] [Indexed: 01/31/2023] Open
Abstract
Apple Valsa canker is a destructive disease caused by the ascomycete Valsa mali and poses a serious threat to apple production. Toxins synthesized by secondary metabolite biosynthetic gene clusters (SMBGCs) have been proven to be crucial for pathogen virulence. A previous study showed that V. mali genome contains remarkably expanded SMBGCs and some of their genes were significantly upregulated during infection. In this study, we focus on LaeA, a known regulator of secondary metabolism, for its role in SMBGC regulation, toxin production, and virulence of V. mali. Deletion of VmLaeA led to greatly reduced virulence with lesion length reduced by 48% on apple twigs. Toxicity tests proved that toxicity of secondary metabolites (SMs) produced by VmLaeA deletion mutant (ΔVmlaeA) was markedly decreased in comparison with wild-type (WT). Transcriptomic and proteomic analyses of WT and ΔVmlaeA indicated that a portion of transporters and about half (31/60) SMBGCs are regulated by VmLaeA. Function analysis of eight gene clusters including PKS7, PKS11, NRPS14, PKS16, PKS23, PKS31, NRPS/PKS33, and PKS39 that were differentially expressed at both transcriptional and translational levels showed that four of them (i.e., PKS11, PKS16, PKS23, and PKS31) were involved in pigment production and NRPS14 contributed to virulence. Our findings will provide new insights and gene resources for understanding the role of pathogenicity-related toxins in V. mali.
Collapse
Affiliation(s)
- Yaqiong Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuxing Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hongxia Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Nana Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Life Science, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
Arifin AR, May TW, Linde CC. New species of Tulasnella associated with Australian terrestrial orchids in the Cryptostylidinae and Drakaeinae. Mycologia 2020; 113:212-230. [PMID: 33146586 DOI: 10.1080/00275514.2020.1813473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many orchids have an obligate relationship with Tulasnella mycorrhizal fungi for seed germination and support into adulthood. Despite the importance of Tulasnella as mycorrhizal partners, many species remain undescribed. Here, we use multiple sequence locus phylogenetic analyses to delimit and describe six new Tulasnella species associated with Australian terrestrial orchids from the subtribes Cryptostylidinae and Drakaeinae. Five of the new species, Tulasnella australiensis, T. occidentalis, T. punctata, T. densa, and T. concentrica, all associate with Cryptostylis (Cryptostylidinae), whereas T. rosea associates with Spiculaea ciliata (Drakaeinae). Isolates representing T. australiensis were previously also reported in association with Arthrochilus (Drakaeinae). All newly described Tulasnella species were delimited by phylogenetic analyses of four loci (nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 [ITS], C14436 [ATP synthase], C4102 [glutamate synthase], and mt 16S rDNA [mtLSU]). The pairwise sequence divergence between species for the ITS region ranged from 5.6% to 25.2%, and the maximum sequence divergence within the newly described species ranged from 1.64% to 4.97%. There was a gap in the distribution of within- and between-species pairwise divergences in the region of 4-6%, with only one within-species value of 4.97% (for two T. australiensis isolates) and one between-species value of 5.6% (involving an isolate of T. occidentalis) falling within this region. Based on fluorescence staining, all six new Tulasnella species are binucleate and have septate, cylindrical hyphae. There was some subtle variation in culture morphology, but colony diameter as measured on 3MN+vitamin medium after 6 wk of growth did not differ among species. However, T. australiensis grew significantly (P < 0.02) slower than others on ½ FIM and ¼ potato dextrose agar (PDA) media. Formal description of these Tulasnella species contributes significantly to documentation of Tulasnella diversity and provides names and delimitations to underpin further research on the fungi and their relationships with orchids.
Collapse
Affiliation(s)
- Arild R Arifin
- Ecology and Evolution, Research School of Biology, The Australian National University , Canberra, ACT 2601, Australia
| | - Tom W May
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne , VIC 3004, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, The Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
40
|
Tian LY, Xu JZ, Zhao DY, Qiu HL, Yang H, Qin CS. New records of Celoporthe guangdongensis and Cytospora rhizophorae on mangrove apple in China. Biodivers Data J 2020; 8:e55251. [PMID: 33223911 PMCID: PMC7655784 DOI: 10.3897/bdj.8.e55251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sonneratia apetala Francis Buchanan-Hamilton (Sonneratiaceae, Myrtales), is a woody species with high adaptability and seed production capacity. S. apetala is widely cultivated worldwide as the main species for mangrove construction. However, the study of diseases affecting S. apetala is limitted, with only a few fungal pathogens being recorded. Cryphonectriaceae (Diaporthales) species are the main pathogens of plants. They can cause canker diseases to several trees and thereby seriously threaten the health of the hosts. These pathogens include Cryphonectria parasitica (Cryphonectriaceae) causing chestnut blight on Castanea (Rigling and Prospero 2017) and Cytospora chrysosperma (Cytosporaceae) causing polar and willow canker to Populus and Salix (Wang et al. 2015) . Therefore, the timely detection of of Cryphonectriaceae canker pathogens on S. apetala is extremely important for protecting the mangrove forests. NEW INFORMATION Two diaporthalean fungi, Celoporthe guangdongensis and Cytospora rhizophorae have been reported for the first time to cause canker on the branches of S. apetala. C. guangdongensis is significantly pathogenic and C. rhizophorae is saprophytic on S. apetala.
Collapse
Affiliation(s)
- Long yan Tian
- Guangdong Academy of Forestry, Guangzhou, ChinaGuangdong Academy of ForestryGuangzhouChina
| | - Jin zhu Xu
- Guangdong Academy of Forestry, Guangzhou, ChinaGuangdong Academy of ForestryGuangzhouChina
| | - Dan yang Zhao
- Guangdong Academy of Forestry, Guangzhou, ChinaGuangdong Academy of ForestryGuangzhouChina
| | - Hua long Qiu
- Guangdong Academy of Forestry, Guangzhou, ChinaGuangdong Academy of ForestryGuangzhouChina
| | - Hua Yang
- Guangdong Academy of Forestry, Guangzhou, ChinaGuangdong Academy of ForestryGuangzhouChina
| | - Chang sheng Qin
- Guangdong Academy of Forestry, Guangzhou, ChinaGuangdong Academy of ForestryGuangzhouChina
| |
Collapse
|
41
|
Predicting the Potential Distribution of Apple Canker Pathogen (Valsa mali) in China under Climate Change. FORESTS 2020. [DOI: 10.3390/f11111126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Apple valsa canker (AVC), caused by Valsa mali, is a serious wood disease of apple trees. The pathogen decays the barks and branches of trees and ruins entire orchards under severe conditions. However, studies have rarely focused on the suitable habitat of the pathogen, especially on a relatively large scale. In this study, we applied the maximum entropy model (MaxEnt 3.4.1, Princeton, NJ, USA) to predict the distribution of V. mali using climate factors, topographic factors, and soil factors under current and future climate scenarios. We measured the area of suitable habitat, change ratio of the suitable habitat area, increase and decrease maps under climate change, direction and distance of range shifts from the present to the end of the 21st century, and the contribution of environmental variables. The results showed that the area of suitable habitat is currently 183.46 × 104 km2 in China, among which 27.54% is moderately suitable habitat (MSH) and 13.13% is highly suitable habitat (HSH). Compared with current distribution, the area of MSH and HSH increases in future and the change ratio are positive. The Shared Socioeconomic Pathways (SSPs) 3–70 is considered the optimum climate scenario for V. mali. The suitability of V. mali increased mainly in Northwest, North, and Northeast China. V. mali will shift to the northwest with climate change. The shift distance optimistically increased from the SSP1–26 to the SSP5–85, with the biggest shift distance of 758.44 km in the 2090s under the SSP5–85 scenario. Minimum temperature of the coldest month (bio6) was the most critical climate factor affecting the distribution of the pathogen, and topographic factors played a more important role than soil factors. This study demonstrates that the potential distribution of V. mali is vitally affected by climate change and provides a method for large–scale research on the distribution of pathogens.
Collapse
|
42
|
Xu M, Guo Y, Tian R, Gao C, Guo F, Voegele RT, Bao J, Li C, Jia C, Feng H, Huang L. Adaptive regulation of virulence genes by microRNA-like RNAs in Valsa mali. THE NEW PHYTOLOGIST 2020; 227:899-913. [PMID: 32222083 DOI: 10.1111/nph.16561] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
MicroRNAs play important roles in the regulation of gene expression in plants and animals. However, little information is known about the action mechanism and function of fungal microRNA-like RNAs (milRNAs). In this study, combining deep sequencing, molecular and histological assays, milRNAs and their targets in the phytopathogenic fungus Valsa mali were isolated and identified. A critical milRNA, Vm-milR16, was identified to adaptively regulate the expression of virulence genes. Fourteen isolated milRNAs showed high expression abundance. Based on the assessment of a pathogenicity function of these milRNAs, Vm-milR16 was found to be a critical milRNA in V. mali by regulating sucrose non-fermenting 1 (VmSNF1), 4,5-DOPA dioxygenase extradiol (VmDODA), and a hypothetical protein (VmHy1). During V. mali infection, Vm-milR16 is downregulated, while its targets are upregulated. Overexpression of Vm-milR16, but not mutated Vm-milR16, significantly reduces the expression of targets and virulence of V. mali. Furthermore, deletion of VmSNF1, VmDODA and VmHy1 significantly reduce virulence of V. mali. All three targets seem to be essential for oxidative stress response and VmSNF1 is required for expression of pectinase genes during V. mali-host interaction. Our results demonstrate Vm-milRNAs contributing to the infection of V. mali on apple trees by adaptively regulating virulence genes.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ralf T Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jiyuan Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenjing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
43
|
Wang Y, Wang Y. Oxalic Acid Metabolism Contributes to Full Virulence and Pycnidial Development in the Poplar Canker Fungus Cytospora chrysosperma. PHYTOPATHOLOGY 2020; 110:1319-1325. [PMID: 32154765 DOI: 10.1094/phyto-10-19-0381-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Poplar Cytospora canker, which is mainly caused by Cytospora chrysosperma, is one of the most destructive and widespread tree diseases worldwide. Although oxalic acid (OA) is demonstrated as an important virulence determinant in several necrotrophic fungi, specific functions of OA during pathogenesis remain controversial. Here, we identified three genes (CcOah, CcOdc1, and CcOdc2) directly involved in OA biosynthesis and catabolism in C. chrysosperma. We demonstrated that CcOah is required for OA biogenesis. All three genes were found to be highly upregulated during early infection stages of the poplar stem. The deletion of any of the three genes led to an obvious reduction of pycnidial production but no abnormality of hyphal growth and morphology. Furthermore, the individual deletion strain exhibited significantly limited lesion sizes on poplar twigs and leaves. Exogenous application of OA or citric acid can complement the virulence defects of ΔCcOah and ΔCcOdc1 strains. We further found that the ΔCcOah strain strongly promoted reactive oxygen species burst of poplar leaves during infection. Finally, induced secretion of OA was observed by monitoring color change of the plates after poplar stem extracts were added in the cultures; however, we failed to quantify OA concentration by high-performance liquid chromatography. Taken together, the present results provide insights into the function of OA acting as an important virulence factor of C. chrysosperma.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
44
|
Kange AM, Xia A, Si J, Li B, Zhang X, Ai G, He F, Dou D. The Fungal-Specific Transcription Factor VpFSTF1 Is Required for Virulence in Valsa pyri. Front Microbiol 2020; 10:2945. [PMID: 31998257 PMCID: PMC6965324 DOI: 10.3389/fmicb.2019.02945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/06/2019] [Indexed: 01/12/2023] Open
Abstract
Valsa pyri is the causal agent of pear canker disease, which leads to enormous losses of pear production in eastern Asian, especially China. In this study, we identified a fungal-specific transcription factor 1 (termed as VpFSTF1) from V. pyri, which is highly conserved in fungi. To characterize its functions, we generated mutant and complementation strains in V. pyri and found that ΔVpFSTF1 mutants lost the ability to form fruiting bodies along with the reduced virulence. The radial growth of ΔVpFSTF1 mutant was sensitive to increasing concentrations of hydrogen peroxide (H2O2) and salicylic acid (SA). Moreover, RNA-sequencing (RNA-Seq) analysis of wild-type (WT) and ΔVpFSTF1 mutant strains was performed, and the results revealed 1,993 upregulated, and 2006 downregulated differentially expressed genes (DEGs) in the mutant. The DEGs were corresponding to the genes that are involved in amino acid metabolism, starch, and sucrose metabolism, gluconeogenesis, citrate cycle, and carbon metabolism. Interestingly, pathogen host interaction (PHI) analysis showed that 69 downregulated genes were related to virulence, suggesting that they might function downstream of VpFSTF1. Nine DEGs were further validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the results were consistent with RNA-seq analysis. Furthermore, promoter regions were predicted, and VpFSTF1 binding activity was assessed. We demonstrated that five promoters are directly or indirectly targeted by VpFSTF1, including catalase-related peroxidase (VPIG_01209) and P450 family genes. Taken together, these findings indicate that VpFSTF1 is crucial for the virulence of V. pyri via direct or indirect regulation of downstream genes expression and lay an important foundation for understanding the molecular mechanism of V. pyri infection.
Collapse
Affiliation(s)
- Alex Machio Kange
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai Xia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jierui Si
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bingxin Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiong Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Gan Ai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,School of Life Sciences, Anhui Normal University, Wuhu, China
| | - Daolong Dou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Zhang Y, Bozorov TA, Li DX, Zhou P, Wen XJ, Ding Y, Zhang DY. An efficient in vitro regeneration system from different wild apple ( Malus sieversii) explants. PLANT METHODS 2020; 16:56. [PMID: 32336979 PMCID: PMC7175559 DOI: 10.1186/s13007-020-00599-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/13/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Wild apple, Malus sieversii, is an endangered species and a valuable genetic resource that requires a variety of conservation techniques. This study aimed to investigate the influence of different concentrations of hormones on wild apple regeneration from leaf and stem explants to establish an optimal regeneration system. RESULTS Leaves and stems derived from seedlings were cultured on several media supplemented with various concentrations of thidiazuron (TDZ) or 6-benzylaminopurine (BA) in different combinations with 1-naphthaleneacetic acid (NAA). The results showed that the most efficient shoot formation media (35% and 90%) were MS medium containing 4.0 mg L-1 TDZ and 1.0 mg L-1 NAA for leaf explants and MS medium containing 1.0 mg L-1 BA without NAA for stem explant. MS medium supplemented with 0.4 mg L-1 BA and 0.1 mg L-1 NAA (for shoot multiplication) and 1/2 MS + 0.1 mg L-1 NAA + 1.5% sucrose (for rooting) were effective media. Shoot regeneration from leaf explants was the most effective when the explants were placed abaxial side down onto the medium and were subjected to a pre-treatment of 3 weeks in darkness. CONCLUSIONS An optimized regeneration system for M. sieversii that allowed regeneration within 2-3 months developed. The protocol developed herein can be used in large-scale clonal propagation for the conservation of wild apple, M. sieversii.
Collapse
Affiliation(s)
- Y. Zhang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 80031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - T. A. Bozorov
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 80031 China
- Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukor-Yuz, Kibray Districts, 111226 Tashkent Region, Uzbekistan
| | - D. X. Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 80031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - P. Zhou
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 80031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - X. J. Wen
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 80031 China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008 China
| | - Y. Ding
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 80031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - D. Y. Zhang
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 80031 China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008 China
| |
Collapse
|
46
|
Wang H, Tian R, Tian Q, Yan X, Huang L, Ji Z. Investigation on the Antifungal Ingredients of Saccharothrix Yanglingensis Hhs.015, an Antagonistic Endophytic Actinomycete Isolated from Cucumber Plant. Molecules 2019; 24:E3686. [PMID: 31614954 PMCID: PMC6833113 DOI: 10.3390/molecules24203686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/05/2022] Open
Abstract
Abstract: Apple tree canker infected by Valsa mali var. mali is a serious and widely distributed disease in China. Saccharothrix yanglingensis Hhs.015 is an endophytic actinomycete isolated from cucumber roots, and it has been proven that this strain is a promising biocontrol agent on apple tree canker in previous studies. The aim of this study was to elucidate the active ingredients in its metabolites. Two pentaene macrolides, WH01 and WH02, were isolated from strain Hhs.015, and their structures were elucidated based on the extensive spectroscopic analysis. WH01 and WH02 were identified as fungichromin and 1'-deoxyfungichromin, among which WH02 is a novel compound. These two compounds showed strong in vitro and in vivo antifungal activity against V. mali. By comparison of the structures of hyphae cells treated by pure compound and fermentation broth, it has been proven that pentaene macrolides are the main active ingredients in the metabolites of strain Hhs.015. This is the first report on the antifungal activity of fungichromin and its analogs on V. mali, and the 28-member pentaene macrolides were also firstly isolated from the genus of Saccharothrix.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qizhen Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhiqin Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
47
|
Bozorov TA, Luo Z, Li X, Zhang D. Agrilus mali Matsumara (Coleoptera: Buprestidae), a new invasive pest of wild apple in western China: DNA barcoding and life cycle. Ecol Evol 2019; 9:1160-1172. [PMID: 30805149 PMCID: PMC6374668 DOI: 10.1002/ece3.4804] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 11/06/2022] Open
Abstract
Agrilus mali Matsumara (Coleoptera: Buprestidae) is a wood-boring beetle distributed to eastern China that occasionally injures apple species. However, this wood-boring beetle is new to the wild apple forests (Malus sieversii) of the Tianshan Mountains (western China) and has caused extensive tree mortality. The development of a biological control program for these wild apple forests is a high priority that requires exploration of the life cycle, DNA barcoding and taxonomic status of A. mali. In this study, to determine the diversity of invasive beetles, a fragment of the mitochondrial cytochrome oxidase gene was analyzed. Based on the results, beetles from Gongliu and Xinyuan counties of Xinjiang were identical but differed from those in the apple nursery of Gongliu by a single-nucleotide substitution. We summarize the taxonomic status, relationships, and genetic distances of A. mali among other Agrilus species using the Tajima-Nei model in maximum likelihood phylogeny. Analysis revealed that A. mali was closely related to Agrilus mendax and both belong to the Sinuatiagrulus subgenus. The life cycle of A. mali was investigated based on a monthly regular inspection in the wild apple forests of Tianshan. Similar to congeneric species, hosts are injured by larvae of A. mali feeding on phloem tissue, resulting in serpentine galleries constructed between bark and xylem that prevent nutrient transport and leading to tree mortality. Future studies will focus on plant physiological responses to the invasive beetles and include surveys of natural enemies for a potential classical biological control program.
Collapse
Affiliation(s)
- Tohir A. Bozorov
- Key Lab of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
- Institute of Genetics and Plants Experimental BiologyUzbek Academy of SciencesTashkent RegionUzbekistan
| | - Zhaohui Luo
- Key Lab of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Xiaoshuang Li
- Key Lab of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Daoyuan Zhang
- Key Lab of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| |
Collapse
|
48
|
Xing H, Ma J, Xu B, Zhang S, Wang J, Cao L, Yang X. Mycobiota of maize seeds revealed by rDNA-ITS sequence analysis of samples with varying storage times. Microbiologyopen 2018; 7:e00609. [PMID: 29573223 PMCID: PMC6291794 DOI: 10.1002/mbo3.609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022] Open
Abstract
Fungi are an integral component of the plant microbiome. However, the composition and variation in the fungal communities (mycobiota) associated with seeds are poorly understood. In this study, we investigated the mycobiota of 11 maize seed samples with storage times ranging from 6 months to 12 years. Mycobiota were characterized by a culture-based approach, and fungal species were identified through rDNA-ITS sequence analyses. From a total of 169 pure fungal isolates obtained from both the seed surface and internal tissues, we identified 16 distinct species (belonging to 10 genera) associated with maize seeds, all but one of which were ascomycetes. Among these species, seven were exclusively isolated from internal tissues, two species were isolated only from the seed surface, and another six species were isolated from both the surface and internal tissues. Aspergillus niger was consistently found under all storage conditions and dominated fungal communities with a relative abundance of 36%-100%. Species of Fusarium (9%-40%) and Penicillium (9%-20%) were also frequently isolated, but other species appeared sporadically and were isolated from fewer than three seed stocks. According to our results, while the overall incidence of fungal infection generally declined with storage time, there was no consistent association between seed storage time and fungal species richness or relative abundance; furthermore, the composition of the mycobiota associated with maize seeds was highly variable among the samples. The detection of the four major mycotoxigenic fungal genera, specifically Aspergillus, Fusarium, Penicillium, and Alternaria, was alarming, and the isolation of a potential controlling agent as well as information about their temporal occurrence will contribute to the management of mycotoxins in the future.
Collapse
Affiliation(s)
- Hui‐Qin Xing
- College of Plant ProtectionGansu Agricultural University and Biocontol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceLanzhouGansuChina
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| | - Jian‐Cang Ma
- Zhangye Maize Stock Production BaseZhangyeGansuChina
| | - Bing‐Liang Xu
- College of Plant ProtectionGansu Agricultural University and Biocontol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceLanzhouGansuChina
| | - Shu‐Wu Zhang
- College of Plant ProtectionGansu Agricultural University and Biocontol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceLanzhouGansuChina
| | - Jin Wang
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| | - Li Cao
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| | - Xue‐Mei Yang
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| |
Collapse
|
49
|
Wu Y, Yin Z, Xu L, Feng H, Huang L. VmPacC Is Required for Acidification and Virulence in Valsa mali. Front Microbiol 2018; 9:1981. [PMID: 30190714 PMCID: PMC6115506 DOI: 10.3389/fmicb.2018.01981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
The role of the transcription factor PacC has been characterised in several pathogenic fungi, and it affects virulence via several mechanisms. In this study, we examined the role of the PacC homolog VmPacC in Valsa mali, the causal agent of apple canker disease. We found that the expression of VmPacC was up-regulated in neutral and alkaline pH and during infection. At pH 6–10, the radial growth of a VmPacC deletion mutant decreased compared to wild-type. In addition, the sensitivity to oxidative stress of the VmPacC deletion mutant was impaired, as its growth was more severely inhibited by H2O2 than that of the wild-type. The lesion size caused by the VmPacC deletion mutant was smaller than that of the wild-type on apple leaves and twigs. Interestingly, expression of pectinase genes increased in deletion mutant during infection. To further confirm the negative regulation, we generated dominant activated C-27 allele mutants that constitutively express VmPacC. The pectinase activity of activated mutants was reduced at pH 4. We further observed that V. mali can acidify the pH during infection, and that the capacity for acidification was impaired after VmPacC deletion. Furthermore, VmPacC is involved in the generation of citric acid, which affects virulence. These results indicate that VmPacC is part of the fungal responses to neutral and alkaline pH and oxidative stress. More importantly, VmPacC is required for acidification of its environment and for full virulence in V. mali.
Collapse
Affiliation(s)
- Yuxing Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
50
|
He F, Zhang X, Li B, Safdar A, Ai G, Kange AM, Zhao Y, Cao H, Dou D, Liu F. Comparative transcriptomics of two Valsa pyri isolates uncover different strategies for virulence and growth. Microb Pathog 2018; 123:478-486. [PMID: 30107193 DOI: 10.1016/j.micpath.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022]
Abstract
Valsa pyri, an ascomycete pathogen that is a member of the Valsaceae family (Sordariomycetes, Diaporthales), which causes pear or apple canker and leads to tree death and massive yield losses. Here, we selected two V. pyri isolates (Vp14 and Vp297) that exhibited different invasion abilities for transcriptomics analyses. Compared toVp297, Vp14 had stronger virulence and spread faster on host-like nutrients. Four samples, including mycelium or infectious mycelium, of the two isolates were sequenced. Clean reads were mapped to the V. pyri genome, and 12490 transcripts and 178 new genes were identified. There were dramatically fewer differentially expressed genes (DEGs) in Vp14 than in Vp297. According to GO and COG annotations, there were both more up- and down-regulated genes in Vp297 than in Vp14 except for genes involved in amino acid transport and metabolism, carbohydrate transport and metabolism, peroxidases and so on. Specific up-regulated DEGs, including genes encoding cell wall degrading enzymes and genes involved in nitrogen metabolism and peroxidases which play crucial roles in virulence and infectious growth, were especially enriched inVp14. These results indicate that the Vp14 isolate may infect its host and take up nutrition more efficiently, reflecting a stronger ability for invasion or infectious growth. Our analysesindicate that a successful V. pyri infection involves multiple instances of transcriptome remodeling to regulate gene functions. Comparative transcriptomics between isolates of V. pyri may aid in our understanding of the virulence mechanism of this pathogen.
Collapse
Affiliation(s)
- Feng He
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Binxin Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Asma Safdar
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gan Ai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Alex Machio Kange
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Haiqun Cao
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| |
Collapse
|