1
|
Xia L, Wang H, Zhao X, Zhao Q, Yu X, Li J, Lou Q, Chen J, Cheng C. The CsPPR gene with RNA-editing function involved in leaf color asymmetry of the reciprocal hybrids derived from Cucumis sativus and C. hystrix. PLANTA 2024; 260:102. [PMID: 39302471 DOI: 10.1007/s00425-024-04513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION The leaf color asymmetry found in the reciprocal hybrids C. hystrix × C. sativus (HC) and C. sativus × C. hystrix (CH) could be influenced by the CsPPR gene (CsaV3_1G038250.1). Most angiosperm organelles are maternally inherited; thus, the reciprocal hybrids usually exhibit asymmetric phenotypes that are associated with the maternal parent. However, there are two sets of organelle genomes in the plant cytoplasm, and the mechanism of reciprocal differences are more complex and largely unknown, because the chloroplast genes are involved besides mitochondrial genes. Cucumis spp. contains the species, i.e., cucumber and melon, which chloroplasts and mitochondria are maternally inherited and paternally inherited, respectively, serving as good materials for the study of reciprocal differences. In this study, leaf color asymmetry was observed in the reciprocal hybrids (HC and CH) derived from C. sativus (2n = 14, CC) and C. hystrix (2n = 24, HH), where the leaves of HC were found to have reduced chlorophyll content, abnormal chloroplast structure and lower photosynthetic capacity. Transcriptomic analysis revealed that the chloroplast development-related genes were differentially expressed in leaf color asymmetry. Genetic analysis showed that leaf color asymmetry was caused by the maternal chloroplast genome. Comparative analysis of chloroplast genomes revealed that there was no mutation in the chloroplast genome during interspecific hybridization. Moreover, a PPR gene (CsaV3_1G038250.1) with RNA-editing function was found to be involved in the regulation of leaf color asymmetry. These findings provide new insights into the regulatory mechanisms of asymmetric phenotypes in plant reciprocal crosses.
Collapse
Affiliation(s)
- Lei Xia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaokun Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Zuo (左胜) S, Guo (郭新异) X, Mandáková T, Edginton M, Al-Shehbaz IA, Lysak MA. Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution. PLANT PHYSIOLOGY 2022; 190:403-420. [PMID: 35670733 PMCID: PMC9434143 DOI: 10.1093/plphys/kiac268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/09/2022] [Indexed: 05/20/2023]
Abstract
Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow ("cold") versus fast ("hot") genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.
Collapse
Affiliation(s)
| | | | - Terezie Mandáková
- CEITEC – Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Mark Edginton
- Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens, Mt Coot-tha Road, Toowong, QLD 4066, Australia
| | | | | |
Collapse
|
3
|
Dong CM, Rankin KJ, McLean CA, Stuart-Fox D. Maternal reproductive output and F1 hybrid fitness may influence contact zone dynamics. J Evol Biol 2021; 34:680-694. [PMID: 33580546 DOI: 10.1111/jeb.13772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
The outcome of secondary contact between divergent lineages or species may be influenced by both the reproductive traits of parental species and the fitness of offspring; however, their relative contributions have rarely been evaluated, particularly in longer-lived vertebrate species. We performed pure and reciprocal laboratory crosses between Ctenophorus decresii (tawny dragon) and C. modestus (swift dragon) to examine how parental reproductive traits and ecologically relevant offspring fitness traits may explain contact zone dynamics in the wild. The two species meet in a contact zone of post-F1 hybrids with asymmetric backcrossing and predominantly C. modestus mtDNA haplotypes. We found no evidence for reduced parental fecundity or offspring fitness for F1 hybrid crosses. However, maternal reproductive strategy differed between species, irrespective of the species of their mate. Ctenophorus modestus females had higher fecundity and produced more and larger clutches with lower embryonic mortality. Parental species also influenced sex ratios and offspring traits, with C. modestus ♀ × C. decresii ♂ hybrids exhibiting higher trait values for more fitness measures (growth rate, sprint speed, bite force) than offspring from all other pairings. Together, these patterns are consistent with the prevalence of C. modestus mtDNA in the contact zone, and asymmetric backcrossing likely reflects fitness effects that manifest in the F2 generation. Our results highlight how parental species can influence multiple offspring traits in different ways, which together may combine to influence offspring fitness and shape contact zone dynamics.
Collapse
Affiliation(s)
- Caroline M Dong
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia.,Sciences Department, Museums Victoria, Melbourne, Vic., Australia
| | - Katrina J Rankin
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| | - Claire A McLean
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia.,Sciences Department, Museums Victoria, Melbourne, Vic., Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
4
|
Vaid N, Laitinen RAE. Diverse paths to hybrid incompatibility in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:199-213. [PMID: 30098060 DOI: 10.1111/tpj.14061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/28/2023]
Abstract
One of the most essential questions of biology is to understand how different species have evolved. Hybrid incompatibility, a phenomenon in which hybrids show reduced fitness in comparison with their parents, can result in reproductive isolation and speciation. Therefore, studying hybrid incompatibility provides an entry point in understanding speciation. Hybrid incompatibilities are known throughout taxa, and the underlying mechanisms have mystified scientists since the theory of evolution by means of natural selection was introduced. In plants, it is only in recent years that the high-throughput genetic and molecular tools have become available for the Arabidopsis genus, thus helping to shed light on the different genes and molecular and evolutionary mechanisms that underlie hybrid incompatibilities. In this review, we highlight the current knowledge of diverse mechanisms that are known to contribute to hybrid incompatibility.
Collapse
Affiliation(s)
- Neha Vaid
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
5
|
Mable BK, Brysting AK, Jørgensen MH, Carbonell AKZ, Kiefer C, Ruiz-Duarte P, Lagesen K, Koch MA. Adding Complexity to Complexity: Gene Family Evolution in Polyploids. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
6
|
Scheriau CL, Nuerk NM, Sharbel TF, Koch MA. Cryptic gene pools in the Hypericum perforatum-H. maculatum complex: diploid persistence versus trapped polyploid melting. ANNALS OF BOTANY 2017; 120:955-966. [PMID: 29182722 PMCID: PMC5710527 DOI: 10.1093/aob/mcx110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/09/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS In Central Europe Hypericum perforatum and Hypericum maculatum show significant hybridization and introgression as a consequence of Pleistocene range fluctuations, and their gene pools are merging on higher ploidy levels. This paper discusses whether polyploid hybrid gene pools are trapped in the ecological climatic niche space of their diploid ancestors, and tests the idea of geographical parthenogenesis. METHODS DNA sequence information of nuclear ribosomal DNA and plastid loci, ploidy level estimates and ecological niche modelling are used to characterize the various diploid and polyploid gene pools and unravel spatio-temporal patterns of gene flow among them. KEY RESULTS On the diploid level, the three gene pools are clearly distinct between and within species of H. perforatum (two gene pools) and H. maculatum, and their divergence dates back to the first half of the Pleistocene. All polyploids in Central Europe show high levels of past and contemporary gene flow between all three gene pools. The correlation of genetic and geographical distances breaks down if the latter is larger than 250 km, indicating recent and ongoing gene flow. The two species are ecologically differentiated, but in particular hybrids among all three gene pools do not show significant niche differences compared to their parental gene pools, except for some combinations with H. maculatum. CONCLUSIONS Inter- and intraspecific gene flow between inter- and intra-species gene pools is limited on the diploid level, and the geographical distribution of the diploids largely reflects Pleistocene evolutionary history. Secondary contact promoted hybridization and introgression on the polyploid level, enabling offspring to escape the diploid gene pools. However, the hybrid polyploids do not show significant niche differences compared to their diploid progenitors. It is concluded that the observed absence of niche divergence has precluded further differentiation and geographical partitioning of new polyploid lineages being effectively separated from the parental lines. The predominantly apomictic reproducing polyploids are trapped in the polyploid gene pool and the ecological climatic niche space of their diploid ancestors.
Collapse
Affiliation(s)
- Charlotte L Scheriau
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Nicolai M Nuerk
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Timothy F Sharbel
- Global Institute for Food Security, Seed Developmental Biology Program, University of Saskatchewan, Canada
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Hohmann N, Koch MA. An Arabidopsis introgression zone studied at high spatio-temporal resolution: interglacial and multiple genetic contact exemplified using whole nuclear and plastid genomes. BMC Genomics 2017; 18:810. [PMID: 29058582 PMCID: PMC5651623 DOI: 10.1186/s12864-017-4220-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
Background Gene flow between species, across ploidal levels, and even between evolutionary lineages is a common phenomenon in the genus Arabidopsis. However, apart from two genetically fully stabilized allotetraploid species that have been investigated in detail, the extent and temporal dynamics of hybridization are not well understood. An introgression zone, with tetraploid A. arenosa introgressing into A. lyrata subsp. petraea in the Eastern Austrian Forealps and subsequent expansion towards pannonical lowlands, was described previously based on morphological observations as well as molecular data using microsatellite and plastid DNA markers. Here we investigate the spatio-temporal context of this suture zone, making use of the potential of next-generation sequencing and whole-genome data. By utilizing a combination of nuclear and plastid genomic data, the extent, direction and temporal dynamics of gene flow are elucidated in detail and Late Pleistocene evolutionary processes are resolved. Results Analysis of nuclear genomic data significantly recognizes the clinal structure of the introgression zone, but also reveals that hybridization and introgression is more common and substantial than previously thought. Also tetraploid A. lyrata and A. arenosa subsp. borbasii from outside the previously defined suture zone show genomic signals of past introgression. A. lyrata is shown to serve usually as the maternal parent in these hybridizations, but one exception is identified from plastome-based phylogenetic reconstruction. Using plastid phylogenomics with secondary time calibration, the origin of A. lyrata and A. arenosa lineages is pre-dating the last three glaciation complexes (approx. 550,000 years ago). Hybridization and introgression followed during the last two glacial-interglacial periods (since approx. 300,000 years ago) with later secondary contact at the northern and southern border of the introgression zone during the Holocene. Conclusions Footprints of adaptive introgression in the Northeastern Forealps are older than expected and predate the Last Glaciation Maximum. This correlates well with high genetic diversity found within areas that served as refuge area multiple times. Our data also provide some first hints that early introgressed and presumably preadapted populations account for successful and rapid postglacial re-colonization and range expansion. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4220-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Hohmann
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.,Present address: Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, CH-4056, Basel, Switzerland
| | - Marcus A Koch
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Hämälä T, Mattila TM, Leinonen PH, Kuittinen H, Savolainen O. Role of seed germination in adaptation and reproductive isolation in Arabidopsis lyrata. Mol Ecol 2017; 26:3484-3496. [PMID: 28393414 DOI: 10.1111/mec.14135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
Abstract
Seed germination is an important developmental and life history stage. Yet, the evolutionary impact of germination has mainly been studied in the context of dormancy, or for its role in reproductive isolation between species. Here, we aim to examine multiple consequences of genetic divergence on germination traits between two Arabidopsis lyrata subspecies: ssp. petraea (Eurasia) and ssp. lyrata (North America). Postdormancy germination time, a potentially adaptive trait, showed differentiation between the populations, and quantitative trait loci (QTL) mapping revealed that the trait variation is mainly controlled by two antagonistic loci. These QTL areas contain several candidate genes with known function in postdormancy germination in A. thaliana. The sequence variation of three genes was consistent with differential selection, and they also included fixed nonsynonymous substitutions with potential to account for the phenotypic differentiation. We further show that the divergence between the subspecies has led to a slight but significant reduction in hybrid germination proportions, indicating incipient reproductive isolation. Comparison of reciprocal F1 and F2 progenies suggests that Bateson-Dobzhansky-Muller incompatibilities likely act through uniparentally inherited factors. Examination of genomewide transmission ratio distortion further revealed that cytonuclear interactions cause substantial pregermination inviability in the hybrids. These results confirm that seed germination has adaptive potential beyond the dormancy stage and that hybrid seed inviability can be one of the first reproductive barriers to arise during divergence.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Päivi H Leinonen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Helmi Kuittinen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Martin H, Touzet P, Dufay M, Godé C, Schmitt E, Lahiani E, Delph LF, Van Rossum F. Lineages of Silene nutans developed rapid, strong, asymmetric postzygotic reproductive isolation in allopatry. Evolution 2017; 71:1519-1531. [PMID: 28384386 DOI: 10.1111/evo.13245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Reproductive isolation can rise either as a consequence of genomic divergence in allopatry or as a byproduct of divergent selection in parapatry. To determine whether reproductive isolation in gynodioecious Silene nutans results from allopatric divergence or from ecological adaptation following secondary contact, we investigated the pattern of postzygotic reproductive isolation and hybridization in natural populations using two phylogeographic lineages, western (W1) and eastern (E1). Experimental crosses between the lineages identified strong, asymmetric postzygotic isolation between the W1 and the E1 lineages, independent of geographic overlap. The proportion of ovules fertilized, seeds aborted, and seeds germinated revealed relatively little effect on the fitness of hybrids. In contrast, hybrid mortality was high and asymmetric: while half of the hybrid seedlings with western lineage mothers died, nearly all hybrid seedlings with E1 mothers died. This asymmetric mortality mirrored the proportion of chlorotic seedlings, and is congruent with cytonuclear incompatibility. We found no evidence of hybridization between the lineages in regions of co-occurrence using nuclear and plastid markers. Together, our results are consistent with the hypothesis that strong postzygotic reproductive isolation involving cytonuclear incompatibilities arose in allopatry. We argue that the dynamics of cytonuclear gynodioecy could facilitate the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Hélène Martin
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Pascal Touzet
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Mathilde Dufay
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Cécile Godé
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Eric Schmitt
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Emna Lahiani
- Unité Évolution, Écologie, Paléontologie, UMR CNRS 8198, Université de Lille 1-Sciences et Technologies, F-59655, Villeneuve d'Ascq, France
| | - Lynda F Delph
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| | - Fabienne Van Rossum
- Meise Botanic Garden (formerly National Botanic Garden of Belgium), Nieuwelaan 38, BE-1860, Meise, Belgium.,Écologie végétale et Biogéochimie, Université Libre de Bruxelles, CP244, Boulevard du Triomphe, BE-1050, Brussels, Belgium.,Fédération Wallonie-Bruxelles, rue A. Lavallée 1, BE-1080, Brussels, Belgium
| |
Collapse
|
10
|
Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proc Natl Acad Sci U S A 2017; 114:E1027-E1035. [PMID: 28115687 DOI: 10.1073/pnas.1615123114] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the biological species concept, two species are considered distinct if reproductive barriers prevent gene flow between them. In Central Europe, the diploid species Arabidopsis lyrata and Arabidopsis arenosa are genetically isolated, thus fitting this concept as "good species." Nonetheless, interspecific gene flow involving their tetraploid forms has been described. The reasons for this ploidy-dependent reproductive isolation remain unknown. Here, we show that hybridization between diploid A. lyrata and A. arenosa causes mainly inviable seed formation, revealing a strong postzygotic reproductive barrier separating these two species. Although viability of hybrid seeds was impaired in both directions of hybridization, the cause for seed arrest differed. Hybridization of A. lyrata seed parents with A. arenosa pollen donors resulted in failure of endosperm cellularization, whereas the endosperm of reciprocal hybrids cellularized precociously. Endosperm cellularization failure in both hybridization directions is likely causal for the embryo arrest. Importantly, natural tetraploid A. lyrata was able to form viable hybrid seeds with diploid and tetraploid A. arenosa, associated with the reestablishment of normal endosperm cellularization. Conversely, the defects of hybrid seeds between tetraploid A. arenosa and diploid A. lyrata were aggravated. According to these results, we hypothesize that a tetraploidization event in A. lyrata allowed the production of viable hybrid seeds with A. arenosa, enabling gene flow between the two species.
Collapse
|