1
|
González Gutiérrez PA, Fuentes-Bazan S, Di Vincenzo V, Berazaín-Iturralde R, Borsch T. The diversification of Caribbean Buxus in time and space: elevated speciation rates in lineages that accumulate nickel and spreading to other islands from Cuba in non-obligate ultramafic species. ANNALS OF BOTANY 2023; 131:1133-1147. [PMID: 37208295 PMCID: PMC10457035 DOI: 10.1093/aob/mcad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS The genus Buxus has high levels of endemism in the Caribbean flora, with ~50 taxa. In Cuba, 82 % grow on ultramafic substrates and 59 % are nickel (Ni) accumulators or Ni hyperaccumulators. Hence it is an ideal model group to study if this diversification could be related to adaptation to ultramafic substrates and to Ni hyperaccumulation. METHODS We generated a well-resolved molecular phylogeny, including nearly all of the Neotropical and Caribbean Buxus taxa. To obtain robust divergence times we tested for the effects of different calibration scenarios, and we reconstructed ancestral areas and ancestral character states. Phylogenetic trees were examined for trait-independent shifts in diversification rates and we used multi-state models to test for state-dependent speciation and extinction rates. Storms could have contributed to Cuba acting as a species pump and to Buxus reaching other Caribbean islands and northern South America'. KEY RESULTS We found a Caribbean Buxus clade with Mexican ancestors, encompassing three major subclades, which started to radiate during the middle Miocene (13.25 Mya). Other Caribbean islands and northern South America were reached from ~3 Mya onwards. CONCLUSIONS An evolutionary scenario is evident in which Buxus plants able to grow on ultramafic substrates by exaptation became ultramafic substrate endemics and evolved stepwise from Ni tolerance through Ni accumulation to Ni hyperaccumulation, which has triggered species diversification of Buxus in Cuba. Storms could have contributed to Cuba acting as a species pump and to Buxus reaching other Caribbean islands and northern South America'.
Collapse
Affiliation(s)
- Pedro A González Gutiérrez
- Centro de Investigaciones y Servicios Ambientales de Holguín, Calle 18 s/n, entre 1ª y Maceo, Holguín 80100, Cuba
| | - Susy Fuentes-Bazan
- Institut für Biologie der Freien Universität Berlin. Altensteinstraße 6, 14195 Berlin, Germany
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Vanessa Di Vincenzo
- Institut für Biologie der Freien Universität Berlin. Altensteinstraße 6, 14195 Berlin, Germany
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | | | - Thomas Borsch
- Institut für Biologie der Freien Universität Berlin. Altensteinstraße 6, 14195 Berlin, Germany
- Botanischer Garten und Botanisches Museum Berlin-Dahlem, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| |
Collapse
|
2
|
Kim S, Sales L, Carreira D, Galetti M. Frugivore distributions are associated with plant dispersal syndrome diversity in the Caribbean archipelagos. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Seokmin Kim
- Department of Biology University of Miami Coral Gables Florida USA
| | - Lilian Sales
- Department of Biology Faculty of Arts and Science Concordia University Montreal Canada
| | | | - Mauro Galetti
- Department of Biology University of Miami Coral Gables Florida USA
| |
Collapse
|
3
|
Single-Island Endemism despite Repeated Dispersal in Caribbean Micrathena (Araneae: Araneidae): An Updated Phylogeographic Analysis. DIVERSITY 2022. [DOI: 10.3390/d14020128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Island biogeographers have long sought to elucidate the mechanisms behind biodiversity genesis. The Caribbean presents a unique stage on which to analyze the diversification process, due to the geologic diversity among the islands and the rich biotic diversity with high levels of island endemism. The colonization of such islands may reflect geologic heterogeneity through vicariant processes and/ or involve long-distance overwater dispersal. Here, we explore the phylogeography of the Caribbean and proximal mainland spiny orbweavers (Micrathena, Araneae), an American spider lineage that is the most diverse in the tropics and is found throughout the Caribbean. We specifically test whether the vicariant colonization via the contested GAARlandia landbridge (putatively emergent 33–35 mya), long-distance dispersal (LDD), or both processes best explain the modern Micrathena distribution. We reconstruct the phylogeny and test biogeographic hypotheses using a ‘target gene approach’ with three molecular markers (CO1, ITS-2, and 16S rRNA). Phylogenetic analyses support the monophyly of the genus but reject the monophyly of Caribbean Micrathena. Biogeographical analyses support five independent colonizations of the region via multiple overwater dispersal events, primarily from North/Central America, although the genus is South American in origin. There is no evidence for dispersal to the Greater Antilles during the timespan of GAARlandia. Our phylogeny implies greater species richness in the Caribbean than previously known, with two putative species of M. forcipata that are each single-island endemics, as well as deep divergences between the Mexican and Floridian M. sagittata. Micrathena is an unusual lineage among arachnids, having colonized the Caribbean multiple times via overwater dispersal after the submergence of GAARlandia. On the other hand, single-island endemism and undiscovered diversity are nearly universal among all but the most dispersal-prone arachnid groups in the Caribbean.
Collapse
|
4
|
Comparisons of habitat types and host tree species across a threatened Caribbean orchid’s core and edge distribution. JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467421000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Tropical forest ecosystems are rich in epiphytes that make up a significant portion of the overall plant diversity. However, epiphytic plants are often understudied due to inaccessibility and the lack of basic ecological information poses challenges to their conservation, particularly in a time of rapid global change. The mule-ear orchid, Trichocentrum undulatum (Orchidaceae), is a large flowering epiphyte found in southern Florida (USA), the Greater, and Lesser Antilles including Cuba. The plant is Florida state-listed as endangered with only one remaining small and declining population in a coastal mangrove forest due to historical extraction and habitat destruction. Currently, there is no systematic understanding of the species’ habitat requirements. To fill this void, we compared the habitat and microhabitat of the species on its northern distribution edge (southern Florida) and the core range (in Cuba). The Florida population has only one host species, Conocarpus erectus, found in one habitat type. This is in sharp contrast to the 92 documented hosts and 5 habitats across 8 provinces in Cuba. Based on our findings from Cuba, we suggest conservation and restoration options in Florida by proposing potential suitable host plants and habitats. Proactive restoration of this species will help to ease the threat from sea-level rise to the species by securing and expanding range margins.
Collapse
|
5
|
Biogeography of Long-Jawed Spiders Reveals Multiple Colonization of the Caribbean. DIVERSITY 2021. [DOI: 10.3390/d13120622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dispersal ability can affect levels of gene flow thereby shaping species distributions and richness patterns. The intermediate dispersal model of biogeography (IDM) predicts that in island systems, species diversity of those lineages with an intermediate dispersal potential is the highest. Here, we tested this prediction on long-jawed spiders (Tetragnatha) of the Caribbean archipelago using phylogenies from a total of 318 individuals delineated into 54 putative species. Our results support a Tetragnatha monophyly (within our sampling) but reject the monophyly of the Caribbean lineages, where we found low endemism yet high diversity. The reconstructed biogeographic history detects a potential early overwater colonization of the Caribbean, refuting an ancient vicariant origin of the Caribbean Tetragnatha as well as the GAARlandia land-bridge scenario. Instead, the results imply multiple colonization events to and from the Caribbean from the mid-Eocene to late-Miocene. Among arachnids, Tetragnatha uniquely comprises both excellently and poorly dispersing species. A direct test of the IDM would require consideration of three categories of dispersers; however, long-jawed spiders do not fit one of these three a priori definitions, but rather represent a more complex combination of attributes. A taxon such as Tetragnatha, one that readily undergoes evolutionary changes in dispersal propensity, can be referred to as a ‘dynamic disperser’.
Collapse
|
6
|
The evolutionary history of the Caribbean magnolias (Magnoliaceae): Testing species delimitations and biogeographical hypotheses using molecular data. Mol Phylogenet Evol 2021; 167:107359. [PMID: 34793981 DOI: 10.1016/j.ympev.2021.107359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
The Caribbean islands provide an ideal setting for studying biodiversity, given their complex geological and environmental history, and their historical and current geographical proximity to the American mainland. Magnolia, a flagship tree genus that has 15 endemic and threatened taxa (12 species and 3 subspecies) on the Caribbean islands, offers an excellent case study to empirically test Caribbean biogeographical hypotheses. We constructed phylogenetic hypotheses to: (1) reveal their evolutionary history, (2) test the current largely morphology-based classification and assess species limits, and (3) investigate major biogeographic hypotheses proposed for the region. Nuclear and chloroplast DNA sequence data of all 15 Caribbean Magnolia taxa are included, supplemented by a selection of American mainland species, and species representing most major clades of the Magnoliaceae family. We constructed phylogenetic hypotheses in a time-calibrated Bayesian framework, supplemented with haplotype network analyses and ancestral range estimations. Genetic synapomorphies in the studied markers confirm the species limits of 14 out of 15 morphologically recognizable Caribbean Magnolia taxa. There is evidence for four colonization events of Magnolia into the Caribbean from the American mainland, which most likely occurred by overwater dispersal, given age estimates of maximum 16 mya for their presence on the Caribbean islands.
Collapse
|
7
|
Bitencourt C, Nürk NM, Rapini A, Fishbein M, Simões AO, Middleton DJ, Meve U, Endress ME, Liede-Schumann S. Evolution of Dispersal, Habit, and Pollination in Africa Pushed Apocynaceae Diversification After the Eocene-Oligocene Climate Transition. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.719741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apocynaceae (the dogbane and milkweed family) is one of the ten largest flowering plant families, with approximately 5,350 species and diverse morphology and ecology, ranging from large trees and lianas that are emblematic of tropical rainforests, to herbs in temperate grasslands, to succulents in dry, open landscapes, and to vines in a wide variety of habitats. Despite a specialized and conservative basic floral architecture, Apocynaceae are hyperdiverse in flower size, corolla shape, and especially derived floral morphological features. These are mainly associated with the development of corolline and/or staminal coronas and a spectrum of integration of floral structures culminating with the formation of a gynostegium and pollinaria—specialized pollen dispersal units. To date, no detailed analysis has been conducted to estimate the origin and diversification of this lineage in space and time. Here, we use the most comprehensive time-calibrated phylogeny of Apocynaceae, which includes approximately 20% of the species covering all major lineages, and information on species number and distributions obtained from the most up-to-date monograph of the family to investigate the biogeographical history of the lineage and its diversification dynamics. South America, Africa, and Southeast Asia (potentially including Oceania), were recovered as the most likely ancestral area of extant Apocynaceae diversity; this tropical climatic belt in the equatorial region retained the oldest extant lineages and these three tropical regions likely represent museums of the family. Africa was confirmed as the cradle of pollinia-bearing lineages and the main source of Apocynaceae intercontinental dispersals. We detected 12 shifts toward accelerated species diversification, of which 11 were in the APSA clade (apocynoids, Periplocoideae, Secamonoideae, and Asclepiadoideae), eight of these in the pollinia-bearing lineages and six within Asclepiadoideae. Wind-dispersed comose seeds, climbing growth form, and pollinia appeared sequentially within the APSA clade and probably work synergistically in the occupation of drier and cooler habitats. Overall, we hypothesize that temporal patterns in diversification of Apocynaceae was mainly shaped by a sequence of morphological innovations that conferred higher capacity to disperse and establish in seasonal, unstable, and open habitats, which have expanded since the Eocene-Oligocene climate transition.
Collapse
|
8
|
Molecular phylogeny, classification, biogeography and diversification patterns of a diverse group of moths (Geometridae: Boarmiini). Mol Phylogenet Evol 2021; 162:107198. [PMID: 33989807 DOI: 10.1016/j.ympev.2021.107198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Understanding how and why some groups have become more species-rich than others, and how past biogeography may have shaped their current distribution, are questions that evolutionary biologists have long attempted to answer. We investigated diversification patterns and historical biogeography of a hyperdiverse lineage of Lepidoptera, the geometrid moths, by studying its most species-rich tribe Boarmiini, which comprises ca. 200 genera and ca. known 3000 species. We inferred the evolutionary relationships of Boarmiini based on a dataset of 346 taxa, with up to eight genetic markers under a maximum likelihood approach. The monophyly of Boarmiini is strongly supported. However, the phylogenetic position of many taxa does not agree with current taxonomy, although the monophyly of most major genera within the tribe is supported after minor adjustments. Three genera are synonymized, one new combination is proposed, and four species are placed in incertae sedis within Boarmiini. Our results support the idea of a rapid initial diversification of Boarmiini, which also implies that no major taxonomic subdivisions of the group can currently be proposed. A time-calibrated tree and biogeographical analyses suggest that boarmiines appeared in Laurasia ca. 52 Mya, followed by dispersal events throughout the Australasian, African and Neotropical regions. Most of the transcontinental dispersal events occurred in the Eocene, a period of intense geological activity and rapid climate change. Diversification analyses showed a relatively constant diversification rate for all Boarmiini, except in one clade containing the species-rich genus Cleora. The present work represents a substantial contribution towards understanding the evolutionary origin of Boarmiini moths. Our results, inevitably biased by taxon sampling, highlight the difficulties with working on species-rich groups that have not received much attention outside of Europe. Specifically, poor knowledge of the natural history of geometrids (particularly in tropical clades) limits our ability to identify key innovations underlying the diversification of boarmiines.
Collapse
|
9
|
Rodriguez‐Silva R, Schlupp I. Biogeography of the West Indies: A complex scenario for species radiations in terrestrial and aquatic habitats. Ecol Evol 2021; 11:2416-2430. [PMID: 33767811 PMCID: PMC7981229 DOI: 10.1002/ece3.7236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/02/2022] Open
Abstract
Studies of the biogeography of the West Indies are numerous but not all taxonomic groups have received the same attention. Many of the contributions to this field have historically focused on terrestrial vertebrates from a perspective closely linked to the classical theory of island biogeography. However, some recent works have questioned whether some of the assumptions of this theory are too simplistic. In this review, we compiled information about the West Indies biogeography based on an extensive and rigorous literature search. While we offer some background of the main hypotheses that explain the origin of the Caribbean biota, our main purpose here is to highlight divergent diversification patterns observed in terrestrial versus aquatic groups of the West Indian biota and also to shed light on the unbalanced number of studies covering the biogeography of these groups of organisms. We use an objective method to compile existing information in the field and produce a rigorous literature review. Our results show that most of the relevant literature in the field is related to the study of terrestrial organisms (mainly vertebrates) and only a small portion covers aquatic groups. Specifically, livebearing fishes show interesting deviations from the species-area relationship predicted by classical island biogeography theory. We found that species richness on the Greater Antilles is positively correlated with island size but also with the presence of elevations showing that not only island area but also mountainous relief may be an important factor determining the number of freshwater species in the Greater Antilles. Our findings shed light on mechanisms that may differently drive speciation in aquatic versus terrestrial environments suggesting that ecological opportunity could outweigh the importance of island size in speciation. Investigations into freshwater fishes of the West Indies offer a promising avenue for understanding origins and subsequent diversification of the Caribbean biota.
Collapse
Affiliation(s)
| | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
10
|
Majure LC, Barrios D, Díaz E, Zumwalde BA, Testo W, Negrón-Ortíz V. Pleistocene aridification underlies the evolutionary history of the Caribbean endemic, insular, giant Consolea (Opuntioideae). AMERICAN JOURNAL OF BOTANY 2021; 108:200-215. [PMID: 33598914 DOI: 10.1002/ajb2.1610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
PREMISE The Caribbean islands are in the top five biodiversity hotspots on the planet; however, the biogeographic history of the seasonally dry tropical forest (SDTF) there is poorly studied. Consolea consists of nine species of dioecious, hummingbird-pollinated tree cacti endemic to the West Indies, which form a conspicuous element of the SDTF. Several species are threatened by anthropogenic disturbance, disease, sea-level rise, and invasive species and are of conservation concern. However, no comprehensive phylogeny yet exists for the clade. METHODS We reconstructed the phylogeny of Consolea, sampling all species using plastomic data to determine relationships, understand the evolution of key morphological characters, and test their biogeographic history. We estimated divergence times to determine the role climate change may have played in shaping the current diversity of the clade. RESULTS Consolea appears to have evolved very recently during the latter part of the Pleistocene on Cuba/Hispaniola likely from a South American ancestor and, from there, moved into the Bahamas, Jamaica, Puerto Rico, Florida, and the Lesser Antilles. The tree growth form is a synapomorphy of Consolea and likely aided in the establishment and diversification of the clade. CONCLUSIONS Pleistocene aridification associated with glaciation likely played a role in shaping the current diversity of Consolea, and insular gigantism may have been a key innovation leading to the success of these species to invade the often-dense SDTF. This in-situ Caribbean radiation provides a window into the generation of species diversity and the complexity of the SDTF community within the Antilles.
Collapse
Affiliation(s)
- Lucas C Majure
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ, 85008, USA
| | - Duniel Barrios
- Grupo de Ecología y Conservación, Jardín Botánico Nacional, Universidad de La Habana, Cuba
| | - Edgardo Díaz
- Planta! - Plantlife Conservation Society, Vancouver, BC, Canada
| | - Bethany A Zumwalde
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Weston Testo
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Vivian Negrón-Ortíz
- U.S. Fish and Wildlife Service, 1601 Balboa Ave., Panama City, FL, 32405, USA
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
11
|
Amorim BS, Vasconcelos TN, Souza G, Alves M, Antonelli A, Lucas E. Advanced understanding of phylogenetic relationships, morphological evolution and biogeographic history of the mega-diverse plant genus Myrcia and its relatives (Myrtaceae: Myrteae). Mol Phylogenet Evol 2019; 138:65-88. [DOI: 10.1016/j.ympev.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 01/10/2023]
|
12
|
Thode VA, Sanmartín I, Lohmann LG. Contrasting patterns of diversification between Amazonian and Atlantic forest clades of Neotropical lianas (Amphilophium, Bignonieae) inferred from plastid genomic data. Mol Phylogenet Evol 2019; 133:92-106. [DOI: 10.1016/j.ympev.2018.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/20/2018] [Accepted: 12/16/2018] [Indexed: 01/23/2023]
|
13
|
Čandek K, Agnarsson I, Binford GJ, Kuntner M. Biogeography of the Caribbean Cyrtognatha spiders. Sci Rep 2019; 9:397. [PMID: 30674906 PMCID: PMC6344596 DOI: 10.1038/s41598-018-36590-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene flow and diversification of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifically, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversified on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
Collapse
Affiliation(s)
- Klemen Čandek
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia.
- Evolutionary Zoology Laboratory, Institute of Biology, Research Centre of the Slovenian Academy of the Sciences and Arts, Ljubljana, Slovenia.
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington D.C., USA
| | - Greta J Binford
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| | - Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington D.C., USA
- College of Life Sciences, Hubei University, Wuhan, Hubei, China
- Evolutionary Zoology Laboratory, Institute of Biology, Research Centre of the Slovenian Academy of the Sciences and Arts, Ljubljana, Slovenia
| |
Collapse
|
14
|
Tong Y, Binford G, Rheims CA, Kuntner M, Liu J, Agnarsson I. Huntsmen of the Caribbean: Multiple tests of the GAARlandia hypothesis. Mol Phylogenet Evol 2019; 130:259-268. [DOI: 10.1016/j.ympev.2018.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022]
|
15
|
Pichardo-Marcano FJ, Nieto-Blázquez ME, MacDonald AN, Galeano G, Roncal J. Phylogeny, historical biogeography and diversification rates in an economically important group of Neotropical palms: Tribe Euterpeae. Mol Phylogenet Evol 2018; 133:67-81. [PMID: 30594734 DOI: 10.1016/j.ympev.2018.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023]
Abstract
Tribe Euterpeae is an economically and ecologically important group of Neotropical palms (Arecaceae). Some species are hyperdominant in the Neotropics, and many constitute a good source of revenue. To reconstruct the biogeographical history and diversification of the Euterpeae, we inferred a robust dated molecular phylogenetic hypothesis including 82% of the species sequenced for five DNA regions (trnD-trnT, CISP4, WRKY6, RPB2, and PHYB). Ancestral range was estimated using all models available in BioGeoBEARS and Binary State Speciation and Extinction analysis was used to evaluate the association of biome and inflorescence type with diversification rates. All intergeneric relationships were resolved providing insight on the taxonomic controversy of Jessenia, Euterpe and Prestoea. Three widely distributed Neotropical species were non-monophyletic, inviting a revision of species circumscriptions. The Euterpeae started its diversification in the mid Eocene (40 Mya), with most species-level divergence events occurring in the last 10 million years. Four colonization events from Central to South America were inferred. Different diversification rates were associated with biomes. Lowland rainforest was inferred as the ancestral biome of Euterpeae, attesting to the importance of lowland adapted lineages on the assembly of the montane flora. The two-fold higher speciation rate for montane taxa (compared with lowland rainforest taxa) was contemporaneous to the Andean orogenic uplift. The specialized beetle pollination of Oenocarpus with its hippuriform (horsetail shape) inflorescence was not associated with diversification rates in Euterpeae.
Collapse
Affiliation(s)
- Fritz José Pichardo-Marcano
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B3X9, Canada.
| | - María Esther Nieto-Blázquez
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B3X9, Canada.
| | - Ashley Nicolle MacDonald
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B3X9, Canada.
| | - Gloria Galeano
- Universidad Nacional de Colombia, Instituto de Ciencias Naturales, Apartado 7495, Bogotá, Colombia
| | - Julissa Roncal
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John's, NL A1B3X9, Canada.
| |
Collapse
|
16
|
Abstract
Amazonia is not only the world’s most diverse rainforest but is also the region in tropical America that has contributed most to its total biodiversity. We show this by estimating and comparing the evolutionary history of a large number of animal and plant species. We find that there has been extensive interchange of evolutionary lineages among different regions and biomes, over the course of tens of millions of years. Amazonia stands out as the primary source of diversity, which can be mainly explained by the total amount of time Amazonian lineages have occupied the region. The exceedingly rich and heterogeneous diversity of the American tropics could only be achieved by high rates of dispersal events across the continent. The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climatic changes. However, we still lack a basic understanding of how Neotropical biodiversity was assembled over evolutionary timescales. Here we infer the timing and origin of the living biota in all major Neotropical regions by performing a cross-taxonomic biogeographic analysis based on 4,450 species from six major clades across the tree of life (angiosperms, birds, ferns, frogs, mammals, and squamates), and integrate >1.3 million species occurrences with large-scale phylogenies. We report an unprecedented level of biotic interchange among all Neotropical regions, totaling 4,525 dispersal events. About half of these events involved transitions between major environmental types, with a predominant directionality from forested to open biomes. For all taxonomic groups surveyed here, Amazonia is the primary source of Neotropical diversity, providing >2,800 lineages to other regions. Most of these dispersal events were to Mesoamerica (∼1,500 lineages), followed by dispersals into open regions of northern South America and the Cerrado and Chaco biomes. Biotic interchange has taken place for >60 million years and generally increased toward the present. The total amount of time lineages spend in a region appears to be the strongest predictor of migration events. These results demonstrate the complex origin of tropical ecosystems and the key role of biotic interchange for the assembly of regional biotas.
Collapse
|
17
|
Nieto‐Blázquez ME, Antonelli A, Roncal J. Historical Biogeography of endemic seed plant genera in the Caribbean: Did GAARlandia play a role? Ecol Evol 2017; 7:10158-10174. [PMID: 29238545 PMCID: PMC5723623 DOI: 10.1002/ece3.3521] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022] Open
Abstract
The Caribbean archipelago is a region with an extremely complex geological history and an outstanding plant diversity with high levels of endemism. The aim of this study was to better understand the historical assembly and evolution of endemic seed plant genera in the Caribbean, by first determining divergence times of endemic genera to test whether the hypothesized Greater Antilles and Aves Ridge (GAARlandia) land bridge played a role in the archipelago colonization and second by testing South America as the main colonization source as expected by the position of landmasses and recent evidence of an asymmetrical biotic interchange. We reconstructed a dated molecular phylogenetic tree for 625 seed plants including 32 Caribbean endemic genera using Bayesian inference and ten calibrations. To estimate the geographic range of the ancestors of endemic genera, we performed a model selection between a null and two complex biogeographic models that included timeframes based on geological information, dispersal probabilities, and directionality among regions. Crown ages for endemic genera ranged from Early Eocene (53.1 Ma) to Late Pliocene (3.4 Ma). Confidence intervals for divergence times (crown and/or stem ages) of 22 endemic genera occurred within the GAARlandia time frame. Contrary to expectations, the Antilles appears as the main ancestral area for endemic seed plant genera and only five genera had a South American origin. In contrast to patterns shown for vertebrates and other organisms and based on our sampling, we conclude that GAARlandia did not act as a colonization route for plants between South America and the Antilles. Further studies on Caribbean plant dispersal at the species and population levels will be required to reveal finer-scale biogeographic patterns and mechanisms.
Collapse
Affiliation(s)
| | - Alexandre Antonelli
- Department of Biological and Environmental SciencesUniversity of GöteborgGöteborgSweden
- Gothenburg Botanical GardenGöteborgSweden
- Gothenburg Global Biodiversity CentreGöteborgSweden
| | - Julissa Roncal
- Department of BiologyMemorial University of NewfoundlandSt. John'sNLCanada
| |
Collapse
|