1
|
Lv H, Park J, Lim HK, Abraham IJ, Yin X, Gao Y, Hur J. Impacts of polyhydroxybutyrate (PHB) microplastic exposure on physiology and metabolic profiles of Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175588. [PMID: 39154993 DOI: 10.1016/j.scitotenv.2024.175588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
In light of increasing concerns about microplastic pollution, it is crucial to understand the biological impacts of biodegradable PHB microplastics on marine organisms. This study included a 96-h exposure experiment to assess acute toxicity at PHB concentrations of 0 mg/L, 100 mg/L, 500 mg/L and 1000 mg/L. Additionally, a 60-day feeding trial was conducted with PHB concentrations of 0, 0.5, 1.0 and 2.0 g/kg to evaluate the long-term effects on growth, physiological health and metabolic responses of Litopenaeus vannamei. Results from the exposure experiment indicated that PHB microplastics up to 100 mg/L were non-toxic to shrimp. However, the 60-day feeding trial revealed that higher concentrations led to slight reductions in survival rates and growth performance, indicating a concentration-dependent response. Analysis of antioxidant and immune enzymes showed minimal changes across most parameters. However, increases in malondialdehyde content and lysozyme activity at higher PHB levels suggested a stress response. Microbial analysis indicated higher species richness and greater community diversity in the PHB group compared to controls, as evidenced by Chao1, ACE, Shannon and Simpson indices. Linear discriminant analysis revealed that Enterobacteriales and related taxa were more prevalent in the PHB group, while Rhodobacteraceae and associated taxa dominated the control group. Pathway analysis highlighted enhanced signal transduction, cell mobility and metabolic resource reallocation in response to PHB-induced stress. Integrated transcriptomic and metabolomic analyses revealed significant regulatory changes, especially in lipid metabolism pathways. These findings suggest that while PHB microplastics trigger adaptive metabolic responses in shrimp, they do not cause acute toxicity. Significant variations in intestinal microbiome composition reflect potential shifts in gut health dynamics due to PHB ingestion. This study enhances our understanding of the ecological impacts of microplastics and underscores the necessity for further research into the environmental safety of biodegradable alternatives.
Collapse
Affiliation(s)
- Huirong Lv
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jungyeol Park
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Han Kyu Lim
- Interdisciplinary Program of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muan 58554, Republic of Korea
| | | | - Xiaolong Yin
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Yang Gao
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Junwook Hur
- Department of Aquaculture and Aquatic Science, Kunsan National University, Gunsan 54150, Republic of Korea.
| |
Collapse
|
2
|
Yan Y, Zheng X, Liu G, Shi G, Li C, Chen H, He X, Lin K, Deng Z, Zhang H, Li WG, Chen H, Tong X, Zhu Z. Gut microbiota-derived cholic acid mediates neonatal brain immaturity and white matter injury under chronic hypoxia. iScience 2024; 27:109633. [PMID: 38638560 PMCID: PMC11025012 DOI: 10.1016/j.isci.2024.109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Chronic hypoxia, common in neonates, disrupts gut microbiota balance, which is crucial for brain development. This study utilized cyanotic congenital heart disease (CCHD) patients and a neonatal hypoxic rat model to explore the association. Both hypoxic rats and CCHD infants exhibited brain immaturity, white matter injury (WMI), brain inflammation, and motor/learning deficits. Through 16s rRNA sequencing and metabolomic analysis, a reduction in B. thetaiotaomicron and P. distasonis was identified, leading to cholic acid accumulation. This accumulation triggered M1 microglial activation and inflammation-induced WMI. Administration of these bacteria rescued cholic acid-induced WMI in hypoxic rats. These findings suggest that gut microbiota-derived cholic acid mediates neonatal WMI and brain inflammation, contributing to brain immaturity under chronic hypoxia. Therapeutic targeting of these bacteria provides a non-invasive intervention for chronic hypoxia patients.
Collapse
Affiliation(s)
- Yichen Yan
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Zheng
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Liu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Li
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtong Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kana Lin
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Deng
- Department of Gastroenterology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guang Li
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional Roles of B‐Vitamins in the Gut and Gut Microbiome. Mol Nutr Food Res 2020; 64:e2000426. [DOI: 10.1002/mnfr.202000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| |
Collapse
|
4
|
Giri S, Waschina S, Kaleta C, Kost C. Defining Division of Labor in Microbial Communities. J Mol Biol 2019; 431:4712-4731. [PMID: 31260694 DOI: 10.1016/j.jmb.2019.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/15/2022]
Abstract
In order to survive and reproduce, organisms must perform a multitude of tasks. However, trade-offs limit their ability to allocate energy and resources to all of these different processes. One strategy to solve this problem is to specialize in some traits and team up with other organisms that can help by providing additional, complementary functions. By reciprocally exchanging metabolites and/or services in this way, both parties benefit from the interaction. This phenomenon, which has been termed functional specialization or division of labor, is very common in nature and exists on all levels of biological organization. Also, microorganisms have evolved different types of synergistic interactions. However, very often, it remains unclear whether or not a given example represents a true case of division of labor. Here we aim at filling this gap by providing a list of criteria that clearly define division of labor in microbial communities. Furthermore, we propose a set of diagnostic experiments to verify whether a given interaction fulfills these conditions. In contrast to the common use of the term, our analysis reveals that both intraspecific and interspecific interactions meet the criteria defining division of labor. Moreover, our analysis identified non-cooperators of intraspecific public goods interactions as growth specialists that divide labor with conspecific producers, rather than being social parasites. By providing a conceptual toolkit, our work will help to unambiguously identify cases of division of labor and stimulate more detailed investigations of this important and widespread type of inter-microbial interaction.
Collapse
Affiliation(s)
- Samir Giri
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
5
|
Selective colonization ability of human fecal microbes in different mouse gut environments. ISME JOURNAL 2018; 13:805-823. [PMID: 30442907 DOI: 10.1038/s41396-018-0312-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
Mammalian hosts constantly interact with diverse exogenous microbes, but only a subset of the microbes manage to colonize due to selective colonization resistance exerted by host genetic factors as well as the native microbiota of the host. An important question in microbial ecology and medical science is if such colonization resistance can discriminate closely related microbial species, or even closely related strains of the same species. Using human-mouse fecal microbiota transplantation and metagenomic shotgun sequencing, we reconstructed colonization patterns of human fecal microbes in mice with different genotypes (C57BL6/J vs. NSG) and with or without an intact gut microbiota. We found that mouse genotypes and the native mouse gut microbiota both exerted different selective pressures on exogenous colonizers: human fecal Bacteroides successfully established in the mice gut, however, different species of Bacteroides selectively enriched under different gut conditions, potentially due to a multitude of functional differences, ranging from versatility in nutrient acquisition to stress responses. Additionally, different clades of Bacteroides cellulosilyticus strains were selectively enriched in different gut conditions, suggesting that the fitness of conspecific microbial strains in a novel host environment could differ.
Collapse
|
6
|
Frank SA. Receptor uptake arrays for vitamin B 12, siderophores, and glycans shape bacterial communities. Ecol Evol 2017; 7:10175-10195. [PMID: 29238546 PMCID: PMC5723603 DOI: 10.1002/ece3.3544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/20/2017] [Accepted: 09/28/2017] [Indexed: 01/15/2023] Open
Abstract
Molecular variants of vitamin B12, siderophores, and glycans occur. To take up variant forms, bacteria may express an array of receptors. The gut microbe Bacteroides thetaiotaomicron has three different receptors to take up variants of vitamin B12 and 88 receptors to take up various glycans. The design of receptor arrays reflects key processes that shape cellular evolution. Competition may focus each species on a subset of the available nutrient diversity. Some gut bacteria can take up only a narrow range of carbohydrates, whereas species such as B. thetaiotaomicron can digest many different complex glycans. Comparison of different nutrients, habitats, and genomes provides opportunity to test hypotheses about the breadth of receptor arrays. Another important process concerns fluctuations in nutrient availability. Such fluctuations enhance the value of cellular sensors, which gain information about environmental availability and adjust receptor deployment. Bacteria often adjust receptor expression in response to fluctuations of particular carbohydrate food sources. Some species may adjust expression of uptake receptors for specific siderophores. How do cells use sensor information to control the response to fluctuations? This question about regulatory wiring relates to problems that arise in control theory and artificial intelligence. Control theory clarifies how to analyze environmental fluctuations in relation to the design of sensors and response systems. Recent advances in deep learning studies of artificial intelligence focus on the architecture of regulatory wiring and the ways in which complex control networks represent and classify environmental states. I emphasize the similar design problems that arise in cellular evolution, control theory, and artificial intelligence. I connect those broad conceptual aspects to many testable hypotheses for bacterial uptake of vitamin B12, siderophores, and glycans.
Collapse
Affiliation(s)
- Steven A. Frank
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|