1
|
Yoo N, Yoon JD, Yoo J, Kim KY, Heo JS, Kim KS. Development of molecular identification methods for Dryophytes suweonensis and D. japonicus, and their hybrids. PeerJ 2024; 12:e16728. [PMID: 38259669 PMCID: PMC10802155 DOI: 10.7717/peerj.16728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background As hybridization can reduce biodiversity or cause extinction, it is important to identify both purebred parental species and their hybrids prior to conserving them. The Suwon tree frog, Dryophytes suweonensis, is an endangered wildlife species in Korea that shares its habitat and often hybridizes with the Japanese tree frog, D. japonicus. In particular, D. suweonensis, D. japonicus, and their hybrids often have abnormal ovaries and gonads, which are known causes that could threaten their existence. Methods We collected 57 individuals from six localities where D. suweonensis is known to be present. High-resolution melting curve (HRM) analysis of the mitochondrial 12S ribosomal RNA gene was performed to determine the maternal species. Thereafter, the DNA sequences of five nuclear genes (SIAH, TYR, POMC, RAG1, and C-MYC) were analyzed to determine their parental species and hybrid status. Results The HRM analysis showed that the melting temperature of D. suweonensis was in the range of 79.0-79.3 °C, and that of D. japonicus was 77.7-78.0 °C, which clearly distinguished the two tree frog species. DNA sequencing of the five nuclear genes revealed 37 single-nucleotide polymorphism (SNP) sites, and STRUCTURE analysis showed a two-group structure as the most likely grouping solution. No heterozygous position in the purebred parental sequences with Q values ≥ 0.995 were found, which clearly distinguished the two treefrog species from their hybrids; 11 individuals were found to be D. suweonensis, eight were found to be D. japonicus, and the remaining 38 individuals were found to be hybrids. Conclusion Thus, it was possible to unambiguously identify the parental species and their hybrids using HRM analysis and DNA sequencing methods. This study provided fundamental information for D. suweonensis conservation and restoration research.
Collapse
Affiliation(s)
- Nakyung Yoo
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | - Ju-Duk Yoon
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | - Jeongwoo Yoo
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| | - Keun-Yong Kim
- Department of Genetic Analysis, AquaGenTech Co., Ltd, Busan, Republic of Korea
| | - Jung Soo Heo
- Department of Genetic Analysis, AquaGenTech Co., Ltd, Busan, Republic of Korea
| | - Keun-Sik Kim
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, Republic of Korea
| |
Collapse
|
2
|
Hu X, Jiang Z, Ming Y, Jian J, Jiang S, Zhang D, Zhang J, Zheng S, Fang X, Yang Y, Zheng R. A chromosomal level genome sequence for Quasipaa spinosa (Dicroglossidae) reveals chromosomal evolution and population diversity. Mol Ecol Resour 2021; 22:1545-1558. [PMID: 34837460 DOI: 10.1111/1755-0998.13560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Quasipaa spinosa is an Asian commercial Dicroglossidae species noted for its spiny chest found in adult males. Here, we report the first chromosomal level Q. spinosa genome employing PacBio long read sequencing and high-resolution chromosome conformation capture (Hi-C) technology. The total length of the final assembled genome was 2,839,292,578 bp, with contig N50 of 3.79 Mb and scaffold N50 of 327.44 Mb. Approximately 99.30% of the length of the assembled genome sequences were anchored to 13 chromosomes with the assistance of Hi-C reads. A total of 26,173 protein-coding genes were predicted, and 95.98% of the genes were functionally annotated. The annotated genes covered a total of 92.10% of the complete vertebrate core gene set according to the BUSCO pipeline evaluation. Approximately 41 million years ago, Q. spinosa began to diverge from its dicroglossid sister taxon Nanorana parkeri. The Q. spinosa genome revealed obvious chromosomal fissions compared with Xenopus tropicalis, which probably represented a specific chromosome evolutionary history within frogs. Population analysis showed that Chinese Q. spinosa could be divided into eastern and western genetic clusters, with the western population showing higher diversity than the eastern population. The effective population size of Q. spinosa showed a continuously decreasing trend from one million years ago to 10,000 years ago. In summary, this study sheds light on Q. spinosa evolution and population differentiation, providing a valuable genomic resource for further biological and genetic studies on this species, and other closely related frog taxa.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China.,Xinzhi College, Zhejiang Normal University, Jinhua, China
| | - Zeyuan Jiang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yao Ming
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Jianbo Jian
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sanjie Jiang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Dandan Zhang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jiayong Zhang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Shanjian Zheng
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xiaodong Fang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Yulan Yang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China.,Center for Plant and Animal Genomics Engineering Research of Guangdong Province, Shenzhen, Guangdong, China
| | - Rongquan Zheng
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, China.,Xinzhi College, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
3
|
Yan F, Nneji LM, Jin JQ, Yuan ZY, Chen JM, Mi X, Chen HM, Murphy RW, Che J. Multi-locus genetic analyses of Quasipaa from throughout its distribution. Mol Phylogenet Evol 2021; 163:107218. [PMID: 34082130 DOI: 10.1016/j.ympev.2021.107218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Montane frogs of the genus Quasipaa Dubois, 1992 occur from southern China to Southeast Asia (Frost 2021). Analyses of mtDNA (Cytb) and nuDNA data (Rag1, Rag2, Rhod, Tyr) for samples from 93 localities throughout its distribution yield a phylogeny. Clades A and B occur in Southeast Asia, clade C in northern Yangtze River, China, clade D in southwestern China, and clades E and F in southeastern China. Results place Q. yei within monophyletic Quasipaa and identify two new species. Based on nuDNA data, the basal split of clade A and B indicates an Indochinese origin of Quasipaa. The west-east diversification of five species across South China (Q. spinosa, Q. exilispinosa, Q. jiulongensis, Q. shini, Q. boulengeri) corresponds to topographic terrains II and III of China. Divergence of species from southeastern China (Q. shini, Q. jiulongensis, Q. spinosa, Q. exilispinosa) and southwestern China (Q. boulengeri) dates to 15.30-16.56 Ma (million years ago). A principal component analysis (PCA) and t-test involving 19 bioclimatic variables identifies significantly different environmental conditions between the two regions. Species' distribution models (SDM) for Q. spinosa and Q. boulengeri identify the best areas to be eastern and western South China, respectively. Thus, environmental variation appears to have influenced the genetic divergence and distributions of Quasipaa in South China. Mito-nuclear discordance indicates that some individuals of Q. exilispinosa and Q. spinosa hybridized historically.
Collapse
Affiliation(s)
- Fang Yan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lotanna M Nneji
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhi-Yong Yuan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; College of Forestry, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Jin-Min Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xue Mi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Man Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
4
|
Pereyra MO, Blotto BL, Baldo D, Chaparro JC, Ron SR, Elias-Costa AJ, Iglesias PP, Venegas PJ, C. Thomé MT, Ospina-Sarria JJ, Maciel NM, Rada M, Kolenc F, Borteiro C, Rivera-Correa M, Rojas-Runjaic FJ, Moravec J, De La Riva I, Wheeler WC, Castroviejo-Fisher S, Grant T, Haddad CF, Faivovich J. Evolution in the Genus Rhinella: A Total Evidence Phylogenetic Analysis of Neotropical True Toads (Anura: Bufonidae). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2021. [DOI: 10.1206/0003-0090.447.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Martín O. Pereyra
- Martín O. Pereyra: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires; and Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical (IBS, CONICET), Universidad Naci
| | - Boris L. Blotto
- Boris L. Blotto: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires; Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUN
| | - Diego Baldo
- Diego Baldo: Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical (IBS, CONICET), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Juan C. Chaparro
- Juan C. Chaparro: Museo de Biodiversidad del Perú, Cusco, Perú; and Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Paraninfo Universitario, Cusco
| | - Santiago R. Ron
- Santiago R. Ron: Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito
| | - Agustín J. Elias-Costa
- Agustín J. Elias-Costa: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires
| | - Patricia P. Iglesias
- Patricia P. Iglesias: Laboratorio de Genética Evolutiva “Claudio J. Bidau”, Instituto de Biología Subtropical (IBS, CONICET), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Pablo J. Venegas
- Pablo J. Venegas: División de Herpetología-Centro de Ornitología y Biodiversidad (CORBIDI), Surco, Lima
| | - Maria Tereza C. Thomé
- Maria Tereza C. Thomé: Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Rio Claro, São Paulo
| | - Jhon Jairo Ospina-Sarria
- Jhon Jairo Ospina-Sarria: Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; and Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali
| | - Natan M. Maciel
- Natan M. Maciel: Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marco Rada
- Marco Rada: Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo
| | - Francisco Kolenc
- Francisco Kolenc: Sección Herpetología, Museo Nacional de Historia Natural, Montevideo
| | - Claudio Borteiro
- Claudio Borteiro: Sección Herpetología, Museo Nacional de Historia Natural, Montevideo
| | - Mauricio Rivera-Correa
- Mauricio Rivera-Correa: Grupo Herpetológico de Antioquia, Instituto de Biología, Universidad de Antioquia, Medellín
| | - Fernando J.M. Rojas-Runjaic
- Fernando J.M. Rojas-Runjaic: Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle (MHNLS), Venezuela; and Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Jiří Moravec
- Jiří Moravec: Department of Zoology, National Museum, Prague, Czech Republic
| | - Ignacio De La Riva
- Ignacio de la Riva: Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid
| | - Ward C. Wheeler
- Ward C. Wheeler: Division of Invertebrate Zoology, American Museum of Natural History, New York
| | - Santiago Castroviejo-Fisher
- Santiago Castroviejo-Fisher: Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil; and Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York
| | - Taran Grant
- Taran Grant: Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo; and Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History, New York
| | - Célio F.B. Haddad
- Célio F.B. Haddad: Universidade Estadual Paulista (UNESP), Instituto de Biociências, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Rio Claro, São Paulo
| | - Julián Faivovich
- Julián Faivovich: División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
| |
Collapse
|
5
|
Habitat partitioning of two closely related pond frogs, Pelophylax nigromaculatus and Pelophylax porosus brevipodus, during their breeding season. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Peek RA, Bedwell M, O'Rourke SM, Goldberg C, Wengert GM, Miller MR. Hybridization between two parapatric ranid frog species in the northern Sierra Nevada, California, USA. Mol Ecol 2019; 28:4636-4647. [DOI: 10.1111/mec.15236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Ryan A. Peek
- Center for Watershed Sciences University of California Davis CA USA
- Department of Animal Science University of California Davis CA USA
| | - Mallory Bedwell
- School of the Environment Washington State University Pullman WA USA
| | - Sean M. O'Rourke
- Department of Animal Science University of California Davis CA USA
| | - Caren Goldberg
- School of the Environment Washington State University Pullman WA USA
| | | | - Michael R. Miller
- Center for Watershed Sciences University of California Davis CA USA
- Department of Animal Science University of California Davis CA USA
| |
Collapse
|
7
|
Zhang QP, Hu WF, Zhou TT, Kong SS, Liu ZF, Zheng RQ. Interspecies introgressive hybridization in spiny frogs Quasipaa (Family Dicroglossidae) revealed by analyses on multiple mitochondrial and nuclear genes. Ecol Evol 2017; 8:1260-1270. [PMID: 29375796 PMCID: PMC5773314 DOI: 10.1002/ece3.3728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
Introgression may lead to discordant patterns of variation among loci and traits. For example, previous phylogeographic studies on the genus Quasipaa detected signs of genetic introgression from genetically and morphologically divergent Quasipaa shini or Quasipaa spinosa. In this study, we used mitochondrial and nuclear DNA sequence data to verify the widespread introgressive hybridization in the closely related species of the genus Quasipaa, evaluate the level of genetic diversity, and reveal the formation mechanism of introgressive hybridization. In Longsheng, Guangxi Province, signs of asymmetrical nuclear introgression were detected between Quasipaa boulengeri and Q. shini. Unidirectional mitochondrial introgression was revealed from Q. spinosa to Q. shini. By contrast, bidirectional mitochondrial gene introgression was detected between Q. spinosa and Q. shini in Lushan, Jiangxi Province. Our study also detected ancient hybridizations between a female Q. spinosa and a male Q. jiulongensis in Zhejiang Province. Analyses on mitochondrial and nuclear genes verified three candidate cryptic species in Q. spinosa, and a cryptic species may also exist in Q. boulengeri. However, no evidence of introgressive hybridization was found between Q. spinosa and Q. boulengeri. Quasipaa exilispinosa from all the sampling localities appeared to be deeply divergent from other communities. Our results suggest widespread introgressive hybridization in closely related species of Quasipaa and provide a fundamental basis for illumination of the forming mechanism of introgressive hybridization, classification of species, and biodiversity assessment in Quasipaa.
Collapse
Affiliation(s)
- Qi-Peng Zhang
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Wen-Fang Hu
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Ting-Ting Zhou
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Shen-Shen Kong
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Zhi-Fang Liu
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China
| | - Rong-Quan Zheng
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province Jinhua Zhejiang China.,Institute of Ecology Zhejiang Normal University Jinhua Zhejiang China.,Xingzhi College of Zhejiang Normal University Jinhua Zhejiang China
| |
Collapse
|