1
|
Zhang YM, Sheikh SI, Ward AKG, Forbes AA, Prior KM, Stone GN, Gates MW, Egan SP, Zhang L, Davis C, Weinersmith KL, Melika G, Lucky A. Delimiting the cryptic diversity and host preferences of Sycophila parasitoid wasps associated with oak galls using phylogenomic data. Mol Ecol 2022; 31:4417-4433. [PMID: 35762844 DOI: 10.1111/mec.16582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
Cryptic species diversity is a major challenge for the species-rich community of parasitoids attacking oak gall wasps due to a high degree of sexual dimorphism, morphological plasticity, small size, and poorly known biology. As such, we know very little about the number of species present, nor the evolutionary forces responsible for generating this diversity. One hypothesis is that trait diversity in the gall wasps, including the morphology of the galls they induce, has evolved in response to selection imposed by the parasitoid community, with reciprocal selection driving diversification of the parasitoids. Using a rare, continental-scale data set of Sycophila parasitoid wasps reared from 44 species of cynipid galls from 18 species of oak across the US, we combined mitochondrial DNA barcodes, Ultraconserved Elements (UCEs), morphological, and natural history data to delimit putative species. Using these results, we generate the first large-scale assessment of ecological specialization and host association in this species-rich group, with implications for evolutionary ecology and biocontrol. We find most Sycophila target specific subsets of available cynipid host galls with similar morphologies, and generally attack larger galls. Our results suggest that parasitoid wasps such as Sycophila have adaptations allowing them to exploit particular host trait combinations, while hosts with contrasting traits are resistant to attack. These findings support the tritrophic niche concept for the structuring of plant-herbivore-parasitoid communities.
Collapse
Affiliation(s)
- Y Miles Zhang
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, DC, USA.,Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Sofia I Sheikh
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Anna K G Ward
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew A Forbes
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Kirsten M Prior
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Michael W Gates
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Washington, DC, USA
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Linyi Zhang
- Department of BioSciences, Rice University, Houston, TX, USA.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Charles Davis
- Department of BioSciences, Rice University, Houston, TX, USA.,Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | | | - George Melika
- Plant Health and Molecular Biology Laboratory, Directorate of Plant Protection, Budapest, Hungary
| | - Andrea Lucky
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Smith-Freedman CJ, Andersen JC, Griffin BP, Schick K, Elkinton JS. Rise and Fall of an Oak Gall Wasp (Hymenoptera: Cynipidae) Outbreak in Massachusetts. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1277-1285. [PMID: 31603500 DOI: 10.1093/ee/nvz115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 06/10/2023]
Abstract
The recently described oak gall wasp Zapatella davisae Buffington & Melika (Hymenoptera: Cynipidae) has caused extensive damage and mortality to black oak trees, Quercus velutina L. (Fagales: Fagaceae), in coastal parts of New England, United States. Like many newly described and/or newly introduced species, it is unclear how long populations of Z. davisae have existed in this region. However, as this species forms galls on the woody-tissue of its host, it may be possible to obtain historical information about changes in its population size by examining the presence of galls in relation to annual growth nodes. Here, we explore the utility of this approach to determine population size changes in Z. davisae densities on Nantucket, Martha's Vineyard, and Cape Cod, Massachusetts, through dissection of black oak branches. In addition, we calculated parasitism rates during the years of study and obtained morphological and molecular identifications for the parasitoids associated with Z. davisae. Our results show significant changes in population sizes, with higher levels of parasitism at sites on Martha's Vineyard and Cape Cod compared to sites on Nantucket. In addition, morphological examinations, in combination with DNA sequencing, identified the associated parasitoids as five species in the genus Sycophila Walker (Hymenoptera: Eurytomidae). We comment that considerable morphological variation within several of these recovered species was observed, present the first record of males for a species from which only females have been described, and suggest that future work is required to clarify the species boundaries for this important parasitoid group.
Collapse
Affiliation(s)
| | - Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA
| | - Brian P Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA
| | - Katherine Schick
- Essig Museum of Entomology, University of California Berkeley, Berkeley, CA
| | - Joseph S Elkinton
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|