1
|
Lush J, Sgrò CM, Hall MD. Anticipating change: The impact of simulated seasonal heterogeneity on heat tolerances along a latitudinal cline. Ecology 2024; 105:e4359. [PMID: 38877760 DOI: 10.1002/ecy.4359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 06/16/2024]
Abstract
An understanding of thermal limits and variation across geographic regions is central to predicting how any population may respond to global change. Latitudinal clines, in particular, have been used to demonstrate that populations can be locally adapted to their own thermal environment and, as a result, not all populations will be equally impacted by an increase in temperature. But how robust are these signals of thermal adaptation to the other ecological challenges that animals commonly face in the wild? Seasonal changes in population density, food availability, or photoperiod are common ecological challenges that could disrupt patterns of thermal tolerance along a cline if each population differentially used these signals to anticipate future temperatures and adjust their thermal tolerances accordingly. In this study, we aimed to test the robustness of a cline in thermal tolerance to simulated signals of seasonal heterogeneity. Experimental animals were derived from clones of the Australian water flea, Daphnia carinata, sampled from nine distinct populations along a latitudinal transect in Eastern Australia. We then factorially combined summer (18 h light, 6 h dark) and winter (6 h light, 18 h dark) photoperiods with high (5 million algal cells individual-1 day-1) and low (1 million algal cells individual-1 day-1) food availabilities, before performing static heat shock assays to measure thermal tolerance. We found that the thermal tolerances of the clonal populations were sensitive to both measures of seasonal change. In general, higher food availability led to an increase in thermal tolerances, with the magnitude of the increase varying by clone. In contrast, a switch in photoperiod led to rank-order changes in thermal tolerances, with heat resistance increasing for some clones, and decreasing for others. Heat resistance, however, still declined with increasing latitude, irrespective of the manipulation of seasonal signals, with clones from northern populations always showing greater thermal resistance, most likely driven by adaptation to winter thermal conditions. While photoperiod and food availability can clearly shape thermal tolerances for specific populations, they are unlikely to overwhelm overarching signals of thermal adaptation, and thus, observed clines in heat resistance will likely have remained robust to these forms of seasonal heterogeneity.
Collapse
Affiliation(s)
- Jared Lush
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Huey RB, Buckley LB. Designing a Seasonal Acclimation Study Presents Challenges and Opportunities. Integr Org Biol 2022; 4:obac016. [PMID: 35692903 PMCID: PMC9175191 DOI: 10.1093/iob/obac016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organisms living in seasonal environments often adjust physiological capacities and sensitivities in response to (or in anticipation of) environment shifts. Such physiological and morphological adjustments (“acclimation” and related terms) inspire opportunities to explore the mechanistic bases underlying these adjustments, to detect cues inducing adjustments, and to elucidate their ecological and evolutionary consequences. Seasonal adjustments (“seasonal acclimation”) can be detected either by measuring physiological capacities and sensitivities of organisms retrieved directly from nature (or outdoor enclosures) in different seasons or less directly by rearing and measuring organisms maintained in the laboratory under conditions that attempt to mimic or track natural ones. But mimicking natural conditions in the laboratory is challenging—doing so requires prior natural-history knowledge of ecologically relevant body temperature cycles, photoperiods, food rations, social environments, among other variables. We argue that traditional laboratory-based conditions usually fail to approximate natural seasonal conditions (temperature, photoperiod, food, “lockdown”). Consequently, whether the resulting acclimation shifts correctly approximate those in nature is uncertain, and sometimes is dubious. We argue that background natural history information provides opportunities to design acclimation protocols that are not only more ecologically relevant, but also serve as templates for testing the validity of traditional protocols. Finally, we suggest several best practices to help enhance ecological realism.
Collapse
Affiliation(s)
- Raymond B Huey
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Doria HB, Caliendo C, Gerber S, Pfenninger M. Photoperiod is an important seasonal selection factor in Chironomus riparius (Diptera: Chironomidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Most organisms respond and can adapt to photoperiodic changes. This affects measurable end points like developmental time, survival and fertility. For ectotherms like Chironomus riparius, temperature is the most studied environmental cue regulating their life cycle, whereas photoperiodic influence is neglected. However, the developmental speed between summer and winter seasons of a field population could not be explained solely by temperature variations. Therefore, to have a comprehensive view on how photoperiods influence chironomid’s life cycle, we investigated if it plays a role in their development and if it acts as an important selective pressure on developmental time speed. To this end, first emerged C. riparius were artificially selected for seven generations. Pre-selected and unselected organisms could develop and breed independently under three light regimes: constant light (24:0 L:D), long days (16:8 L:D) and short days (8:16 L:D). Adult emergence, mean and median emergence time and fertility were integrated into the population growth rate to compare fitness. Our findings show that although developmental time is extended under short days, this same condition may exert a selective pressure towards a shorter development. Moreover, by also using photoperiodic clues to anticipate environmental changes, chironomids can potentially adapt to alterations in climate.
Collapse
Affiliation(s)
- Halina Binde Doria
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
| | - Cosima Caliendo
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Staudinger Weg, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Staudinger Weg, Mainz, Germany
| | - Markus Pfenninger
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage, Frankfurt am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg, Mainz, Germany
| |
Collapse
|
4
|
Manenti T, Sten LJ, Loeschcke V. Daily increasing or decreasing photoperiod affects stress resistance and life history traits in four Drosophila species. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104251. [PMID: 33971199 DOI: 10.1016/j.jinsphys.2021.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Photoperiod is one of the most reliable seasonal cues that organisms can use to prepare for upcoming environmental changes. Evidence suggests that exposure to different photoperiod can activate plastic responses in stress resistance traits, while there is limited evidence on the plastic response induced by daily progressive cumulative changes in photoperiod. In this study, we assayed the effect of within generation daily uni-directional and cumulative changes in photoperiod on stress resistance and life history traits in four Drosophila species. We predicted that daily increasing photoperiod, mimicking upcoming summer conditions, should lead to an increase in heat resistance and establish trade-offs with other fitness related traits. On the other hand, we predicted that daily decreasing photoperiod should reflect upcoming winter conditions leading to an increase in cold resistance. We found that within genreation changes in photoperiod had a significant effect on life history and stress resistance traits in the four Drosophila species. The observed response was different across species, with D. melanogaster showing five out of six studied traits affected, while in D. mercatorum only one trait was significantly affected. The exposure to changing photoperiod led to an increased upper thermal resistance in D. melanogaster and D. mercatorum and a decreased lower thermal resistance in D. melanogaster and D. simulans, as well as a decreased starvation and desiccation resistance in D. virilis. The developmental time was shorter when flies were exposed to the two photoperiod regimes compared to constant day length control in D. melanogaster and D. simulans. A limited effect was observed on egg-to-adult-viability and desiccation resistance. The results of this study show that daily change in photoperiod induced a plastic response in different traits of drosophilids, suggesting that this environmental parameter needs to be carefully considered in evolutionary studies.
Collapse
Affiliation(s)
- Tommaso Manenti
- Dept. of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark; Laboratori Biokyma srl, Loc. Mocaia 44b, 52031 Anghiari, AR, Italy.
| | - Linnea Juul Sten
- Dept. of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| | - Volker Loeschcke
- Dept. of Biology, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. High developmental temperature leads to low reproduction despite adult temperature. J Therm Biol 2020; 95:102794. [PMID: 33454035 DOI: 10.1016/j.jtherbio.2020.102794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Phenotypic plasticity can help organisms cope with changing thermal conditions and it may depend on which life-stage the thermal stress is imposed: for instance, exposure to stressful temperatures during development can trigger a positive plastic response in adults. Here, we analyze the thermal plastic response of laboratory populations of Drosophila subobscura, derived from two contrasting latitudes of the European cline. We measured reproductive performance through fecundity characters, after the experimental populations were exposed to five thermal treatments, with different combinations of developmental and adult temperatures (14 °C, 18 °C, or 26 °C). Our questions were whether (1) adult performance changes with exposure to higher (or lower) temperatures during development; (2) flies raised at lower temperatures outperform those developed at higher ones, supporting the "colder is better" hypothesis; (3) there is a cumulative effect on adult performance of exposing both juveniles and adults to higher (or lower) temperatures; (4) there is evidence for biogeographical effects on adult performance. Our main findings were that (1) higher developmental temperatures led to low reproductive performance regardless of adult temperature, while at lower temperatures reduced performance only occurred when colder conditions were persistent across juvenile and adult stages; (2) flies raised at lower temperatures did not always outperform those developed at other temperatures; (3) there were no harmful cumulative effects after exposing both juveniles and adults to higher temperatures; (4) both latitudinal populations showed similar thermal plasticity patterns. The negative effect of high developmental temperature on reproductive performance, regardless of adult temperature, highlights the developmental stage as very critical and most vulnerable to climate change and associated heat waves.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autonòma de Barcelona, Spain
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
6
|
Comparison of Static and Dynamic Assays When Quantifying Thermal Plasticity of Drosophilids. INSECTS 2020; 11:insects11080537. [PMID: 32824251 PMCID: PMC7469138 DOI: 10.3390/insects11080537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Temperature directly affects many biological processes, from enzymatic reactions to population growth, and thermal stress tolerance is central to our understanding of the global distribution and abundance of species and populations. Given the importance of thermal stress tolerance in ecophysiology and evolutionary biology it is important to be able to measure thermal stress resistance accurately and in ecologically relevant ways. Several methods for such quantification exist in the arthropod literature and the comparability of different methods is currently being debated. Here we reconcile the two most commonly used thermal assays (dynamic ramping and static knockdown assays) for quantifying insect heat tolerance limits and plastic responses using a newly suggested modeling technique. We find that results obtained on the basis of the two assays are highly correlated and that data from one assay can therefore reasonably well predict estimates from the other. These data are of general relevance to the study of thermal biology of ectotherms. Abstract Numerous assays are used to quantify thermal tolerance of arthropods including dynamic ramping and static knockdown assays. The dynamic assay measures a critical temperature while the animal is gradually heated, whereas the static assay measures the time to knockdown at a constant temperature. Previous studies indicate that heat tolerance measured by both assays can be reconciled using the time × temperature interaction from “thermal tolerance landscapes” (TTLs) in unhardened animals. To investigate if this relationship remains true within hardened animals, we use a static assay to assess the effect of heat hardening treatments on heat tolerance in 10 Drosophila species. Using this TTL approach and data from the static heat knockdown experiments, we model the expected change in dynamic heat knockdown temperature (CTmax: temperature at which flies enter coma) and compare these predictions to empirical measurements of CTmax. We find that heat tolerance and hardening capacity are highly species specific and that the two assays report similar and consistent responses to heat hardening. Tested assays are therefore likely to measure the same underlying physiological trait and provide directly comparable estimates of heat tolerance. Regardless of this compliance, we discuss why and when static or dynamic assays may be more appropriate to investigate ectotherm heat tolerance.
Collapse
|
7
|
Comparison of overwintering survival and fertility of Zaprionus indianus (Diptera: Drosophilidae) flies from native and invaded ranges. J Therm Biol 2020; 87:102470. [DOI: 10.1016/j.jtherbio.2019.102470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/31/2019] [Accepted: 11/24/2019] [Indexed: 11/20/2022]
|
8
|
Verheyen J, Tüzün N, Stoks R. Using natural laboratories to study evolution to global warming: contrasting altitudinal, latitudinal, and urbanization gradients. CURRENT OPINION IN INSECT SCIENCE 2019; 35:10-19. [PMID: 31301449 DOI: 10.1016/j.cois.2019.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Demonstrating the likelihood of evolution in response to global warming is important, yet challenging. We discuss how three spatial thermal gradients (latitudinal, altitudinal, and urbanization) can be used as natural laboratories to inform about the gradual thermal evolution of populations by applying a space-for-time substitution (SFTS) approach. We compare thermal variables and confounding non-thermal abiotic variables, methodological approaches and evolutionary aspects associated with each type of gradient. On the basis of an overview of recent insect studies, we show that a key assumption of SFTS, local thermal adaptation along these gradients, is often but not always met, requiring explicit validation. To increase realism when applying SFTS, we highlight the importance of integrating daily temperature fluctuations, multiple stressors and multiple interacting species. Finally, comparative studies, especially across gradient types, are important to provide more robust inferences of evolution under gradual global warming. Integrating these research directions will further strengthen the still underused, yet powerful SFTS approach to infer gradual evolution under global warming.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium.
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|