1
|
Lau SCY, Wilson NG, Watts PC, Silva CNS, Cooke IR, Allcock AL, Mark FC, Linse K, Jernfors T, Strugnell JM. Circumpolar and Regional Seascape Drivers of Genomic Variation in a Southern Ocean Octopus. Mol Ecol 2025; 34:e17601. [PMID: 39628448 DOI: 10.1111/mec.17601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025]
Abstract
Understanding how ecological, environmental and geographic features influence population genetic patterns provides crucial insights into a species' evolutionary history, as well as their vulnerability or resilience under climate change. In the Southern Ocean, population genetic variation is influenced across multiple spatial scales ranging from circum-Antarctic, which encompasses the entire continent, to regional, with varying levels of geographic separation. However, comprehensive analyses testing the relative importance of different environmental and geographic variables on genomic variation across these scales are generally lacking in the Southern Ocean. Here, we examine genome-wide single nucleotide polymorphisms of the Southern Ocean octopus Pareledone turqueti across the Scotia Sea and the Antarctic continental shelf, at depths between 102 and 1342 m, throughout most of this species' range. The circumpolar distribution of P. turqueti is biogeographically structured with a clear signature of isolation-by-geographical distance, but with long-distance genetic connectivity also detected between East and West Antarctica. Genomic variation of P. turqueti was also associated with bottom water temperature at a circumpolar scale, driven by a genotype-temperature association with the warmer sub-Antarctic Shag Rocks and South Georgia. Within the Scotia Sea, geographic distance, oxygen and fine-scale isolation-by-water depth were apparent drivers of genomic variation at regional scales. Putative positive selection of haemocyanin (oxygen transport protein), calcium ion transport and genes linked to RNA modification, detected within the Scotia Sea, suggest physiological adaptation to the regional sharp temperature gradient (~0-+2°C). Overall, we identified seascape drivers of genomic variation in the Southern Ocean at circumpolar and regional scales in P. turqueti and contextualised the role of environmental adaptations in the Southern Ocean.
Collapse
Affiliation(s)
- Sally C Y Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| | - Nerida G Wilson
- Collections & Research, Western Australian Museum, Welshpool, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
- Securing Antarctica's Environmental Future, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Department of Life Sciences, Centre for Functional Ecology - Science for People & the Planet (CFE), Associate Laboratory TERRA, University of Coimbra, Coimbra, Portugal
| | - Ira R Cooke
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - A Louise Allcock
- School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Felix C Mark
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Toni Jernfors
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Soltani S, Ghatrami ER, Nabavi SMB, Khorasani N, Naderi M. The correlation between echinoderms diversity and physicochemical parameters in marine pollution: A case study of the Persian Gulf coastline. MARINE POLLUTION BULLETIN 2024; 199:115989. [PMID: 38171165 DOI: 10.1016/j.marpolbul.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
This study was conducted with the aim of investigating the correlation between echinoderms diversity and physicochemical parameters in the Persian Gulf coastline in Bushehr province in 4 seasons from March to December 2017. The physicochemical parameters including water temperature, dissolved oxygen (DO), electrical conductivity (EC), salinity, pH and turbidity were measured at each sampling location. The results showed a significant correlation between echinoderms diversity and physicochemical parameters. The correlation coefficient of the Astropecten polyacanthus species with the parameters of temperature, DO, EC, salinity and turbidity was reported as -0.41, 0.64, -0.25, -0.44 and 0.60 respectively. This coefficient for the Ophiothrix fragilis species was reported as -0.68, 0.70, -0.21, -0.36 and -0.55 respectively. The results demonstrated that the most sensitive species were Astropecten polyacanthus and Ophiothrix fragilis respectively. The different species of echinoderms can be used as biological indicators of pollution in evaluating the physicochemical quality of marine environments.
Collapse
Affiliation(s)
- Shiva Soltani
- Department of Environmental Science and Forestry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ebrahim Rajabzadeh Ghatrami
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramashahr, Iran.
| | - Seyed Mohammad Bagher Nabavi
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Nematollah Khorasani
- Department of Environmental Science and Forestry, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maziar Naderi
- Department of Environmental Health Engineering, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lau SCY, Wilson NG, Golledge NR, Naish TR, Watts PC, Silva CNS, Cooke IR, Allcock AL, Mark FC, Linse K, Strugnell JM. Genomic evidence for West Antarctic Ice Sheet collapse during the Last Interglacial. Science 2023; 382:1384-1389. [PMID: 38127761 DOI: 10.1126/science.ade0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
The marine-based West Antarctic Ice Sheet (WAIS) is considered vulnerable to irreversible collapse under future climate trajectories, and its tipping point may lie within the mitigated warming scenarios of 1.5° to 2°C of the United Nations Paris Agreement. Knowledge of ice loss during similarly warm past climates could resolve this uncertainty, including the Last Interglacial when global sea levels were 5 to 10 meters higher than today and global average temperatures were 0.5° to 1.5°C warmer than preindustrial levels. Using a panel of genome-wide, single-nucleotide polymorphisms of a circum-Antarctic octopus, we show persistent, historic signals of gene flow only possible with complete WAIS collapse. Our results provide the first empirical evidence that the tipping point of WAIS loss could be reached even under stringent climate mitigation scenarios.
Collapse
Affiliation(s)
- Sally C Y Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Qld, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Qld, Australia
| | - Nerida G Wilson
- Collections & Research, Western Australian Museum, Welshpool, WA, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Securing Antarctica's Environmental Future, Western Australian Museum, Welshpool, WA, Australia
| | - Nicholas R Golledge
- Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
| | - Tim R Naish
- Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Qld, Australia
- Centre for Functional Ecology - Science for People & the Planet (CFE), Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Portugal
| | - Ira R Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Qld, Australia
| | - A Louise Allcock
- School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Felix C Mark
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | | | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, Townsville, Qld, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Qld, Australia
| |
Collapse
|
4
|
Species composition of sea stars (Echinodermata: Asteroidea) in the Patagonian Argentinian deep sea, including seven new records: connectivity with sub-Antarctic and Antarctic fauna. Polar Biol 2022. [DOI: 10.1007/s00300-022-03056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe main target of this paper is to improve the knowledge of the species composition of sea stars in Patagonian Argentine deep sea reaching depths of 2062 m. In addition, these results offer us the opportunity to analyze the possible connections between Argentinian marine fauna and adjacent Antarctic areas that have become a topic of interest in the past few years. This work is based on Atlantic Projects’ surveys carried out on an atypical and especially vulnerable marine ecosystems (canyons created from craters collapse by gas leaks). These are profusely impacted by frequent fishing activities, being one of the most important and international fishing grounds, where 887 records (1878 specimens) of 41 species of asteroids were collected in 217 stations ranging from 219 to 2062 m in depth. Seven of those species are proposed as new records: (Diplasterias octoradiata (Studer 1885), Plutonaster bifrons (Wyville Thomson, 1873), Radiaster elegans Perrier, 1881, Anseropoda antarctica Fisher, 1940, Pillsburiaster calvus Mah, 2011, Paralophaster lorioli (Koehler, 1907), Pteraster flabellifer Mortensen 1933). After refining the database built from literature and open-access databases such as OBIS and AntBIF, the new Argentinian asteroids deep-water checklist contains 2198 records from 64 asteroids species including the 7 new records proposed. Most of these 64 species (89.06%) are present in Antarctic-adjacent waters, and after the study of their occurrences at traditional biogeographic entities, our results support the hypothesis that Argentinian waters (in the case of the class Asteroidea) should be considered part of the sub-Antarctic entity.
Collapse
|
5
|
Levicoy D, Flores K, Rosenfeld S, Cárdenas L. Phylogeography and genetic diversity of the microbivalve Kidderia subquadrata, reveals new data from West Antarctic Peninsula. Sci Rep 2021; 11:5705. [PMID: 33707560 PMCID: PMC7952419 DOI: 10.1038/s41598-021-85042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
It is well established that Antarctic biodiversity has been strongly influenced by rapid climatic fluctuations during the Quaternary. Marine invertebrates from Antarctica constitute an interesting lens through which to study the impacts of the last glacial periods as glaciation impacted the distribution and intraspecific genetic variation of these animals. However, the impact on the spatial genetic distribution and historical demography of local processes in areas adjacent to the West Antarctic Peninsula (WAP) is less clear. Here we present new genetic information on the bivalve Kidderia subquadrata, a small mollusk that inhabits intertidal rocky island ecosystems throughout the WAP. Using a phylogeographical approach, we examined the spatial patterns of genetic diversity in this brooder species to test the hypothesis of strong genetic structure in incubating organisms and the hypothesis of glacial refugia in organisms with limited dispersion. We found evidence of strong genetic structure among populations of the WAP and a recent expansion in the South Shetland Islands. Our findings are concordant with the predictions that incubating organisms, abundant in Antarctica, present a strong genetic structure among their populations and also support the hypothesis of glacial refugia in organisms with limited dispersion. The effect of the coastal current pattern in the WAP is suggested as a driver to the local spatial dynamics of the genetic diversity distribution. Although genetic information about this microbivalve is still scarce, the knowledge reported here has increased our understanding of the evolutionary patterns of this organism that is endemic to the Southern Ocean.
Collapse
Affiliation(s)
- Daniela Levicoy
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile
| | - Kamilla Flores
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile
| | - Sebastián Rosenfeld
- Laboratorio de Ecosistemas Marinos Antárticos Y Subantárticos, Universidad de Magallanes, Casilla 113-D, Punta Arenas, Chile.,Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Las Palmeras # 3425, Ñuñoa, Santiago, Chile
| | - Leyla Cárdenas
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile.
| |
Collapse
|
6
|
Jossart Q, Kochzius M, Danis B, Saucède T, Moreau CVE. Diversity of the Pterasteridae (Asteroidea) in the Southern Ocean: a molecular and morphological approach. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
An integrative approach is crucial in discrimination of species, especially for taxa that are difficult to identify based on morphological characters. In this study, we combine genetics and morphology to assess the diversity of Pterasteridae, a sea star family diversified in deep-sea and polar environments. Because of their derived anatomy and the frequent loss of characters during preservation, Pterasteridae are a suitable case for an integrative study. The molecular identification of 191 specimens (mostly from the Southern Ocean) suggests 26–33 species in three genera (Diplopteraster, Hymenaster and Pteraster), which match the morphological identification in 54–62% of cases. The mismatches are either different molecular units that are morphologically indistinguishable (e.g. Pteraster stellifer units 2 and 4) or, conversely, nominal species that are genetically identical (e.g. Hymenaster coccinatus/densus/praecoquis). Several species are shared between the Northern and Southern Hemispheres (e.g. Pteraster jordani/affinis). In conclusion, the taxonomic status of some groups is confirmed, but for others we find the need to re-evaluate the taxonomy at both genus and species levels. This work significantly increases the DNA barcode library of the Southern Ocean species and merges taxonomic information into an identification key that could become a baseline for future studies (pterasteridae-so.identificationkey.org).
Collapse
Affiliation(s)
- Quentin Jossart
- Marine Biology, Ecology and Biodiversity, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marc Kochzius
- Marine Biology, Ecology and Biodiversity, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bruno Danis
- Laboratoire de Biologie Marine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Thomas Saucède
- Biogéosciences, Université Bourgogne Franche Comté (UBFC), Dijon, France
| | - Camille V E Moreau
- Laboratoire de Biologie Marine, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Biogéosciences, Université Bourgogne Franche Comté (UBFC), Dijon, France
| |
Collapse
|
7
|
Salloum PM, de Villemereuil P, Santure AW, Waters JM, Lavery SD. Hitchhiking consequences for genetic and morphological patterns: the influence of kelp-rafting on a brooding chiton. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
Onithochiton neglectus is a morphologically variable, brooding chiton inhabiting coastal reefs throughout New Zealand and its Sub-Antarctic Islands. Southern O. neglectus populations are typically associated with buoyant kelp (Durvillaea spp.) and are potentially connected via kelp-rafting. Northern O. neglectus populations are less likely to raft, due to lower numbers of Durvillaea in northern New Zealand. To test for the impact of kelp-rafting on the spatial distribution of variation in O. neglectus, we undertook a combined analysis of morphological and genetic variation across the range of the species. Geometric morphometrics were used to assess shell shape. We detected a northern vs. southern split in shell shape, corresponding to the frequency of the O. neglectus/Durvillaea spp. association. To assess O. neglectus genetic patterns across New Zealand, we estimated phylogenetic trees with nuclear (ITS) and mitochondrial (COI and 16S) markers, which revealed distinct northern and southern lineages, and an additional lineage in central New Zealand. Neither the morphological nor genetic groups match existing O. neglectus subspecies, but are concordant with the patterns of association of O. neglectus with Durvillaea. We suggest that shell shape may be linked to O. neglectus’ regionally variable ecological association with kelp holdfasts.
Collapse
Affiliation(s)
- P M Salloum
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - P de Villemereuil
- EPHE PSL University, Institut de Systématique, Evolution et Biodiversité, UMR 7205, CNRS, MNHN, Sorbonne Université, Paris, France
| | - A W Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - J M Waters
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - S D Lavery
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, Warkworth, New Zealand
| |
Collapse
|