1
|
Gray WJ, Rakes LM, Cole C, Gunter A, He G, Morgan S, Walsh-Antzak CR, Yates JA, Erickson PA. Rapid wing size evolution in African fig flies ( Zaprionus indianus) following temperate colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623845. [PMID: 39605430 PMCID: PMC11601493 DOI: 10.1101/2024.11.15.623845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Invasive species often encounter novel selective pressures in their invaded range, and understanding their potential for rapid evolution is critical for developing effective management strategies. Zaprionus indianus is an invasive drosophilid native to Africa that reached Florida in 2005 and likely re-establishes temperate North American populations each year. We addressed two evolutionary questions in this system: first, do populations evolve phenotypic changes in the generations immediately following colonization of temperate environments? Second, does Z. indianus evolve directional phenotypic changes along a latitudinal cline? We established isofemale lines from wild collections across space and time and measured twelve ecologically relevant phenotypes, using a reference population as a control. Z. indianus evolved smaller wings following colonization, suggesting early colonizers have larger wings, but smaller wings are favorable after colonization. No other phenotypes changed significantly following colonization or across latitudes, but we did see significant post-colonization changes in principal components of all phenotypes. We documented substantial laboratory evolution and effects of the laboratory environment across multiple phenotypes, emphasizing the importance of controlling for both possibilities when conducting common garden studies. Our results demonstrate the potential for rapid adaptation in Z. indianus, which could contribute to its success and expansion throughout invaded ecosystems.
Collapse
Affiliation(s)
- Weston J. Gray
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Logan M. Rakes
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Christine Cole
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Ansleigh Gunter
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Guanting He
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Samantha Morgan
- Department of Biology, University of Richmond, Richmond, VA, USA
| | | | - Jillian A. Yates
- Department of Biology, University of Richmond, Richmond, VA, USA
| | | |
Collapse
|
2
|
Ueno T, Takenoshita A, Hamamichi K, Sato MP, Takahashi Y. Rapid seasonal changes in phenotypes in a wild Drosophila population. Sci Rep 2023; 13:21940. [PMID: 38114661 PMCID: PMC10730618 DOI: 10.1038/s41598-023-48571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Seasonal environmental change is one of the most rapid and striking environmental variables. Although relatively rapid adaptation to environmental changes over several years or several decades has been described in many taxa, rapid responses to seasonal environments are delicate, and therefore, the detection of the evolutionary responses requires sensitive methods. In this study, we examined seasonal changes in phenotypes related to thermal tolerance and morphological traits of Drosophila lutescens collected at the spring and autumn periods from a single location. We first demonstrated that flies in the two seasonal periods were almost genetically identical using double-digest restriction site-associated DNA sequencing and analysis. Using an experimental design to eliminate the effect of possible confounding factors that influence phenotypes (i.e., maternal effects and the environmental conditions in which each phenotype was analyzed), we showed that the heat tolerance of D. lutescens was significantly higher in the autumn population than in the spring population. Furthermore, cold tolerance was slightly higher in the spring population than in the autumn one. Although wing length and thorax length did not change significantly between seasons, the ratio of wing length to thorax length changed significantly between them. These results suggest that seasonal environmental heterogeneity induces rapid phenotypic changes within a year. Finally, we discuss the possibility of rapid evolutionary responses to seasonal changes.
Collapse
Affiliation(s)
- Takahisa Ueno
- Graduate School of Science, Chiba University, Chiba, Japan
| | | | - Kaiya Hamamichi
- Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Mitsuhiko P Sato
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan.
| |
Collapse
|
3
|
Olazcuaga L, Foucaud J, Deschamps C, Loiseau A, Claret J, Vedovato R, Guilhot R, Sévely C, Gautier M, Hufbauer RA, Rode NO, Estoup A. Rapid and transient evolution of local adaptation to seasonal host fruits in an invasive pest fly. Evol Lett 2022; 6:490-505. [PMID: 36579160 PMCID: PMC9783429 DOI: 10.1002/evl3.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/12/2022] [Accepted: 10/27/2022] [Indexed: 12/30/2022] Open
Abstract
Both local adaptation and adaptive phenotypic plasticity can influence the match between phenotypic traits and local environmental conditions. Theory predicts that environments stable for multiple generations promote local adaptation, whereas highly heterogeneous environments favor adaptive phenotypic plasticity. However, when environments have periods of stability mixed with heterogeneity, the relative importance of local adaptation and adaptive phenotypic plasticity is unclear. Here, we used Drosophila suzukii as a model system to evaluate the relative influence of genetic and plastic effects on the match of populations to environments with periods of stability from three to four generations. This invasive pest insect can develop within different fruits, and persists throughout the year in a given location on a succession of distinct host fruits, each one being available for only a few generations. Using reciprocal common environment experiments of natural D. suzukii populations collected from cherry, strawberry, and blackberry, we found that both oviposition preference and offspring performance were higher on medium made with the fruit from which the population originated than on media made with alternative fruits. This pattern, which remained after two generations in the laboratory, was analyzed using a statistical method we developed to quantify the contributions of local adaptation and adaptive plasticity in determining fitness. Altogether, we found that genetic effects (local adaptation) dominate over plastic effects (adaptive phenotypic plasticity). Our study demonstrates that spatially and temporally variable selection does not prevent the rapid evolution of local adaptation in natural populations. The speed and strength of adaptation may be facilitated by several mechanisms including a large effective population size and strong selective pressures imposed by host plants.
Collapse
Affiliation(s)
- Laure Olazcuaga
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France,Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA
| | - Julien Foucaud
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Candice Deschamps
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Jean‐Loup Claret
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Romain Vedovato
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Cyril Sévely
- Chambre d'agriculture de l'HéraultLattes34875France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Ruth A. Hufbauer
- Department of Agricultural BiologyColorado State UniversityFort CollinsColorado80523USA,Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado80523USA
| | - Nicolas O. Rode
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| | - Arnaud Estoup
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ MontpellierMontpellier34988France
| |
Collapse
|
4
|
Huey RB, Buckley LB. Designing a Seasonal Acclimation Study Presents Challenges and Opportunities. Integr Org Biol 2022; 4:obac016. [PMID: 35692903 PMCID: PMC9175191 DOI: 10.1093/iob/obac016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organisms living in seasonal environments often adjust physiological capacities and sensitivities in response to (or in anticipation of) environment shifts. Such physiological and morphological adjustments (“acclimation” and related terms) inspire opportunities to explore the mechanistic bases underlying these adjustments, to detect cues inducing adjustments, and to elucidate their ecological and evolutionary consequences. Seasonal adjustments (“seasonal acclimation”) can be detected either by measuring physiological capacities and sensitivities of organisms retrieved directly from nature (or outdoor enclosures) in different seasons or less directly by rearing and measuring organisms maintained in the laboratory under conditions that attempt to mimic or track natural ones. But mimicking natural conditions in the laboratory is challenging—doing so requires prior natural-history knowledge of ecologically relevant body temperature cycles, photoperiods, food rations, social environments, among other variables. We argue that traditional laboratory-based conditions usually fail to approximate natural seasonal conditions (temperature, photoperiod, food, “lockdown”). Consequently, whether the resulting acclimation shifts correctly approximate those in nature is uncertain, and sometimes is dubious. We argue that background natural history information provides opportunities to design acclimation protocols that are not only more ecologically relevant, but also serve as templates for testing the validity of traditional protocols. Finally, we suggest several best practices to help enhance ecological realism.
Collapse
Affiliation(s)
- Raymond B Huey
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Aggarwal DD, Rybnikov S, Sapielkin S, Rashkovetsky E, Frenkel Z, Singh M, Michalak P, Korol AB. Seasonal changes in recombination characteristics in a natural population of Drosophila melanogaster. Heredity (Edinb) 2021; 127:278-287. [PMID: 34163036 PMCID: PMC8405755 DOI: 10.1038/s41437-021-00449-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental seasonality is a potent evolutionary force, capable of maintaining polymorphism, promoting phenotypic plasticity and causing bet-hedging. In Drosophila, environmental seasonality has been reported to affect life-history traits, tolerance to abiotic stressors and immunity. Oscillations in frequencies of alleles underlying fitness-related traits were also documented alongside SNPs across the genome. Here, we test for seasonal changes in two recombination characteristics, crossover rate and crossover interference, in a natural D. melanogaster population from India using morphological markers of the three major chromosomes. We show that winter flies, collected after the dry season, have significantly higher desiccation tolerance than their autumn counterparts. This difference proved to hold also for hybrids with three independent marker stocks, suggesting its genetic rather than plastic nature. Significant between-season changes are documented for crossover rate (in 9 of 13 studied intervals) and crossover interference (in four of eight studied pairs of intervals); both single and double crossovers were usually more frequent in the winter cohort. The winter flies also display weaker plasticity of both recombination characteristics to desiccation. We ascribe the observed differences to indirect selection on recombination caused by directional selection on desiccation tolerance. Our findings suggest that changes in recombination characteristics can arise even after a short period of seasonal adaptation (~8-10 generations).
Collapse
Affiliation(s)
- Dau Dayal Aggarwal
- Department of Zoology, Banaras Hindu University, Varanasi, India.
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.
| | - Sviatoslav Rybnikov
- Institute of Evolution, University of Haifa, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| | - Shaul Sapielkin
- Institute of Evolution, University of Haifa, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | | | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Manvender Singh
- Department of Biotechnology, UIET, MD University, Rohtak, India
| | - Pawel Michalak
- Institute of Evolution, University of Haifa, Haifa, Israel
- Edward Via College of Osteopathic Medicine, Monroe, LA, USA
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Erickson PA, Weller CA, Song DY, Bangerter AS, Schmidt P, Bergland AO. Unique genetic signatures of local adaptation over space and time for diapause, an ecologically relevant complex trait, in Drosophila melanogaster. PLoS Genet 2020; 16:e1009110. [PMID: 33216740 PMCID: PMC7717581 DOI: 10.1371/journal.pgen.1009110] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/04/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Organisms living in seasonally variable environments utilize cues such as light and temperature to induce plastic responses, enabling them to exploit favorable seasons and avoid unfavorable ones. Local adapation can result in variation in seasonal responses, but the genetic basis and evolutionary history of this variation remains elusive. Many insects, including Drosophila melanogaster, are able to undergo an arrest of reproductive development (diapause) in response to unfavorable conditions. In D. melanogaster, the ability to diapause is more common in high latitude populations, where flies endure harsher winters, and in the spring, reflecting differential survivorship of overwintering populations. Using a novel hybrid swarm-based genome wide association study, we examined the genetic basis and evolutionary history of ovarian diapause. We exposed outbred females to different temperatures and day lengths, characterized ovarian development for over 2800 flies, and reconstructed their complete, phased genomes. We found that diapause, scored at two different developmental cutoffs, has modest heritability, and we identified hundreds of SNPs associated with each of the two phenotypes. Alleles associated with one of the diapause phenotypes tend to be more common at higher latitudes, but these alleles do not show predictable seasonal variation. The collective signal of many small-effect, clinally varying SNPs can plausibly explain latitudinal variation in diapause seen in North America. Alleles associated with diapause are segregating in Zambia, suggesting that variation in diapause relies on ancestral polymorphisms, and both pro- and anti-diapause alleles have experienced selection in North America. Finally, we utilized outdoor mesocosms to track diapause under natural conditions. We found that hybrid swarms reared outdoors evolved increased propensity for diapause in late fall, whereas indoor control populations experienced no such change. Our results indicate that diapause is a complex, quantitative trait with different evolutionary patterns across time and space.
Collapse
Affiliation(s)
- Priscilla A. Erickson
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cory A. Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Y. Song
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alyssa S. Bangerter
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alan O. Bergland
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|