1
|
Hu G, Feng H, Otuka A, Reynolds DR, Drake VA, Chapman JW. The East Asian Insect Flyway: Geographical and Climatic Factors Driving Migration Among Diverse Crop Pests. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:1-22. [PMID: 39499909 DOI: 10.1146/annurev-ento-012524-124018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The East Asian Insect Flyway is a globally important migration route stretching from the Indochina Peninsula and the Philippines through East China to Northeast China and northern Japan, although most migrants utilize only part of the flyway. In this review, we focus on long-range windborne migrations of lepidopteran and planthopper pests. We outline the environment in which migrations occur, with emphasis on the seasonal atmospheric circulations that influence the transporting wind systems. Northward movement in spring is facilitated by favorable prevailing winds, allowing migrants to colonize vast areas of East Asia. Migrants may be subject to contemporary natural selection for long flights as succeeding generations progressively advance northward. Overshooting into far northern areas from which there is little chance of return seems common in planthoppers. Moths are less profligate and have evolved complex flight behaviors that can facilitate southward transport in autumn, although timely spells of favorable winds may not occur in some years.
Collapse
Affiliation(s)
- Gao Hu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China;
| | - Hongqiang Feng
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in the Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China;
| | - Akira Otuka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Koshi, Japan;
| | - Don R Reynolds
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom;
| | - V Alistair Drake
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
- School of Science, The University of New South Wales, Canberra, Australian Capital Territory, Australia;
| | - Jason W Chapman
- Centre for Ecology and Conservation and Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom;
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China;
| |
Collapse
|
2
|
Matsukura K, Matsumura M. The Spread of Southern Rice Black-Streaked Dwarf Virus Was Not Caused by Biological Changes in Vector Sogatella furcifera. Microorganisms 2024; 12:1204. [PMID: 38930586 PMCID: PMC11205324 DOI: 10.3390/microorganisms12061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The pandemic of Southern rice black-streaked dwarf virus (SRBSDV) in and after the late 2000s caused serious yield losses in rice in Southeast and East Asia. This virus was first recorded in China in 2001, but its exclusive vector insect, Sogatella furcifera, occurred there before then. To clarify the evolutionary origin of SRBSDV as the first plant virus transmitted by S. furcifera, we tested virus transmission using three chronological strains of S. furcifera, two of which were established before the first report of SRBSDV. When the strains fed on SRBSDV-infected rice plants were transferred to healthy rice plants, those established in 1989 and 1999 transmitted the virus to rice similarly to the strain established in 2010. SRBSDV quantification by RT-qPCR confirmed virus accumulation in the salivary glands of all three strains. Therefore, SRBSDV transmission by S. furcifera was not caused by biological changes in the vector, but probably by the genetic change of the virus from a closely related Fijivirus, Rice black-streaked dwarf virus, as suggested by ecological and molecular biological comparisons between the two viruses. This result will help us to better understand the evolutionary relationship between plant viruses and their vector insects and to better manage viral disease in rice cropping in Asia.
Collapse
Affiliation(s)
- Keiichiro Matsukura
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan
| | - Masaya Matsumura
- Koshi Research Station, Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Koshi 861-1192, Kumamoto, Japan
| |
Collapse
|
3
|
Long GY, Yang XB, Wang Z, Zeng QH, Yang H, Jin DC. Wing expansion functional analysis of ion transport peptide gene in Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110946. [PMID: 38266956 DOI: 10.1016/j.cbpb.2024.110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Ion transport peptide (ITP), a superfamily of arthropod neuropeptides, serves a crucial role in regulating various physiological processes such as diuresis, ecdysis behavior, and wing expansion. However, the molecular characteristics, expression profile, and role of ITP in Sogatella furcifera are poorly understood. To elucidate the characteristics and biological function of ITP in S. furcifera, we employed reverse transcription-polymerase chain reaction (RT-PCR) and RNA interference (RNAi) methods. The identified SfITP gene encodes 117 amino acids. The expression of SfITP gradually increased followed the formation of 3-day-old of 5th instar nymph, peaking initially at 40 min after eclosion, and reaching another peak 24 h after eclosion, with particularly high expression levels in thorax and wing tissues. Notably, SfITP RNAi in 3rd instar nymphs of S. furcifera significantly inhibited the transcript levels of SfITP, resulting in 55% mortality and 78% wing deformity. These findings suggests that SfITP is involved in the regulation of wing expansion in S. furcifera, providing insights into the regulation of insect wing expansion and contributing to the molecular understanding of this process.
Collapse
Affiliation(s)
- Gui-Yun Long
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang 550025, China; Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Xi-Bin Yang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China; Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou Province, Guiyang 550001, People's Republic of China
| | - Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China
| | - Qing-Hui Zeng
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China.
| |
Collapse
|
4
|
Horgan FG. Slowing virulence adaptation in Asian rice planthoppers through migration-based deployment of resistance genes. CURRENT OPINION IN INSECT SCIENCE 2023; 55:101004. [PMID: 36640841 DOI: 10.1016/j.cois.2023.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Advances in molecular biology have accelerated rice breeding for resistance to Asian planthoppers. However, experience shows that planthoppers quickly adapt to resistance in tropical overwintering areas. With only limited sources available, the large-scale deployment of resistance genes can rapidly reduce the utility of these public goods. Planthoppers that migrate from tropical to temperate Asia carry virulence against many resistance genes, but adapt more slowly to resistant rice in temperate regions. Therefore, by restricting deployment of selected genes to temperate regions, virulence-adaptation rates and the volume of migrants returning to overwintering sites could be reduced. The current open exchange of breeding materials throughout Asia urgently requires an international, multidisciplinary, stakeholder coalition to promote a more sustainable deployment of planthopper-resistant rice.
Collapse
Affiliation(s)
- Finbarr G Horgan
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland; Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; Centre for Pesticide Suicide Prevention, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
5
|
Wu Y, Sun SS, Jiang ZY, Chen AD, Ma MY, Zhang G, Zhai BP, Li C. Immigration Pathways of White-Backed Planthopper in the Confluence Area of the Two Monsoon Systems. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1480-1489. [PMID: 35665819 DOI: 10.1093/jee/toac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 06/15/2023]
Abstract
The white-backed planthopper, WBPH, Sogatella furcifera (Horváth) is a plant pest that migrates long-distances. The migration pathway of WBPH in eastern China coincides with the north-south round trip of the East Asian monsoon. However, in Yunnan China, which is affected by two monsoon systems, the migration pathway is unclear. Light-trap data and analysis of female ovarian development showed that the peak period of immigration of WBPH into western Yunnan was earlier than in eastern Yunnan. Using meteorological reanalysis data and flight parameters of WBPH, trajectory modeling showed that there are two immigration pathways to Yunnan. One is from Myanmar to western Yunnan, and the other is from Vietnam and Laos to eastern Yunnan. The reason for the differences in source areas and immigration pathways between eastern and western Yunnan is that the west wind prevails in western Yunnan and is controlled by South Asian monsoon, while southwesterly winds prevail in eastern Yunnan due to the combined influence of South Asian monsoon and East Asian monsoon. The results indicate that WBPH invades Yunnan via two pathways under a two-monsoon system. These data will allow earlier prediction and population management of WBPH.
Collapse
Affiliation(s)
- Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Si Sun
- Guizhou Key Laboratory of Mountainous Climate and Resources, Guizhou Institute of Mountainous Environment and Climate, Guiyang 550002, China
| | - Zi-Ye Jiang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China
| | - Ai-Dong Chen
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Research Team for Innovations in Sustainable Prevention and Control of Agricultural Cross-Border Pests of Yunnan Province, Kunming 650205, China
- Joint Laboratory for Collaborative and Innovative Chinese and South & Southeast Asian Plant Protection Research, Kunming 650205, China
| | - Ming-Yong Ma
- Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Guo Zhang
- Zhenjiang Institute of Agricultural Science in Hilly Area of Jiangsu Province, Zhenjiang 212400, China
| | - Bao-Ping Zhai
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang 550005, China
| |
Collapse
|
6
|
Yang S, Bao Y, Zheng X, Zeng J. Effect of the Asian monsoon on the northward migration of the brown planthopper to northern South China. Ecosphere 2022. [DOI: 10.1002/ecs2.4217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shi‐Jun Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters Nanjing University of Information Science and Technology Nanjing China
- Jiangsu Key Laboratory of Agricultural Meteorology Nanjing University of Information Science and Technology Nanjing China
| | - Yun‐Xuan Bao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters Nanjing University of Information Science and Technology Nanjing China
- Jiangsu Key Laboratory of Agricultural Meteorology Nanjing University of Information Science and Technology Nanjing China
| | - Xin‐Fei Zheng
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters Nanjing University of Information Science and Technology Nanjing China
- Jiangsu Key Laboratory of Agricultural Meteorology Nanjing University of Information Science and Technology Nanjing China
| | - Juan Zeng
- National Agro‐Tech Extension and Service Center Beijing China
| |
Collapse
|
7
|
Tyagi S, Narayana S, Singh RN, Srivastava CP, Twinkle S, Das SK, Jeer M. Migratory behaviour of Brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), in India as inferred from genetic diversity and reverse trajectory analysis. 3 Biotech 2022; 12:266. [PMID: 36091088 PMCID: PMC9458824 DOI: 10.1007/s13205-022-03337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/27/2022] [Indexed: 11/26/2022] Open
Abstract
The brown planthopper, Nilaparvata lugens (Stål) is a major sucking insect pest of rice. This insect has long been considered as migratory; however, its route in India is still unknown. Hence, to find out its migration route genetic diversity, genetic structure and gene flow of 16 N. lugens populations from major rice growing regions of India was studied based on mitochondrial cytochrome oxidase I (COI). The results revealed a high genetic homogeneity among the populations on the basis of genetic diversity statistics and neutrality tests. There was a prevalence of a single major haplotype across the country. No spatial relevance was found with the genetic structure of the populations indicating presence of excessive gene flow among them. Extensive gene flow among populations was also confirmed with the presence of higher number of immigrants in North, Central, and East India. To further clarify the migration sources, 48 h air-mass reverse trajectory was performed for Varanasi just aftermath of cyclones Amphan and Yaas, which disclosed Eastern/Northeastern states along with Bangladesh and Myanmar as the possible source areas. Overall, the results revealed a single panmictic homogeneous population of N. lugens in India with extensive gene flow as a consequence of their migration. These findings will help in better forecasting enabling efficient regional management of this important rice pest. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03337-6.
Collapse
Affiliation(s)
- Saniya Tyagi
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
- BRD PG College, Deoria, Uttar Pradesh, India
| | - Srinivasa Narayana
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - R. N. Singh
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - C. P. Srivastava
- Department of Entomology and Agricultural Zoology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - S. Twinkle
- Amity Institute of Biotechnology, Noida, Uttar Pradesh 201313 India
| | | | - Mallikarjuna Jeer
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhattisgarh 493225 India
| |
Collapse
|