1
|
Fernandes DS, Okuma D, Pantoja-Gomez LM, Cuenca A, Corrêa AS. Bemisia tabaci MEAM1 still remains the dominant species in open field crops in Brazil. BRAZ J BIOL 2024; 84:e256949. [DOI: 10.1590/1519-6984.256949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/08/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Among Bemisia tabaci species, the invasive MEAM1 and MED species are key agricultural pests for many crops. In Brazil, most part of B. tabaci population outbreaks were associated with MEAM1, which, since 1990s quickly spread across the entire country. Later in 2014, the MED was identified in Brazil, initially more restricted to greenhouses, but suddenly reaching new areas in the South and Southeast open regions. Thus, our objective was to investigate the geographical distribution of MEAM1 and MED on open field crops in Brazil. MEAM1 is still the predominant species on open field crops such as soybean, cotton, and tomato. The sequencing of a cytochrome c oxidase subunit I (COI) gene fragment revealed a single haplotype of MEAM1, suggesting the establishment of a single MEAM1 strain in the country. The haplotypes found for MEAM1 and MED are genetically related to the globally dispersed strains, Jap1 and Mch1, respectively. Continuous monitoring of B. tabaci species is crucial because landscape alterations, climatic changes, and pest management methods may shift the B. tabaci species distribution and dominance in Brazilian crop areas.
Collapse
Affiliation(s)
| | - D. Okuma
- Universidade de São Paulo, Brasil; Bayer Crop Science, Brasil
| | | | | | | |
Collapse
|
2
|
Mugerwa H, Colvin J, Alicai T, Omongo CA, Kabaalu R, Visendi P, Sseruwagi P, Seal SE. Genetic diversity of whitefly ( Bemisia spp.) on crop and uncultivated plants in Uganda: implications for the control of this devastating pest species complex in Africa. JOURNAL OF PEST SCIENCE 2021; 94:1307-1330. [PMID: 34720787 PMCID: PMC8550740 DOI: 10.1007/s10340-021-01355-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 05/12/2023]
Abstract
UNLABELLED Over the past three decades, highly increased whitefly (Bemisia tabaci) populations have been observed on the staple food crop cassava in eastern Africa and associated with ensuing viral disease pandemics and food insecurity. Increased whitefly numbers have also been observed in other key agricultural crops and weeds. Factors behind the population surges on different crops and their interrelationships are unclear, although in cassava they have been associated with specific populations within the Bemisia tabaci species complex known to infest cassava crops in Africa. This study carried out an in-depth survey to understand the distribution of B. tabaci populations infesting crops and uncultivated plant hosts in Uganda, a centre of origin for this pest complex. Whitefly samples were collected from 59 identified plant species and 25 unidentified weeds in a countrywide survey. Identities of 870 individual adult whiteflies were determined through mitochondrial cytochrome oxidase 1 sequences (651 bp) in the 3' barcode region used for B. tabaci systematics. Sixteen B. tabaci and five related whitefly putative species were identified based on > 4.0% nucleotide divergence, of which three are proposed as novel B. tabaci putative species and four as novel closely related whitefly species. The most prevalent whiteflies were classified as B. tabaci MED-ASL (30.5% of samples), sub-Saharan Africa 1 (SSA1, 22.7%) and Bemisia Uganda1 (12.1%). These species were also indicated to be the most polyphagous occurring on 33, 40 and 25 identified plant species, respectively. Multiple (≥ 3) whitefly species occurred on specific crops (bean, eggplant, pumpkin and tomato) and weeds (Sida acuta and Ocimum gratissimum). These plants may have increased potential to act as reservoirs for mixed infections of whitefly-vectored viruses. Management of whitefly pest populations in eastern Africa will require an integration of approaches that consider their degree of polyphagy and a climate that enables the continuous presence of crop and uncultivated plant hosts. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10340-021-01355-6.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223 USA
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| | - Titus Alicai
- Root Crops Programme, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Christopher A. Omongo
- Root Crops Programme, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Richard Kabaalu
- Root Crops Programme, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Paul Visendi
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, 4001 Australia
| | - Peter Sseruwagi
- Biotechnology Department, Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| | - Susan E. Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| |
Collapse
|
3
|
Low Genetic Variability in Bemisia tabaci MEAM1 Populations within Farmscapes of Georgia, USA. INSECTS 2020; 11:insects11120834. [PMID: 33255960 PMCID: PMC7760769 DOI: 10.3390/insects11120834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022]
Abstract
Simple Summary Sweetpotato whitefly, Bemisia tabaci Gennadius, is a serious pest of many agricultural crops worldwide. Numerous studies have examined the genetic structure of whitefly populations separated by geographical barriers; however, very few have assessed the population structure of B. tabaci at a farmscape level. A farmscape in this study is defined as heterogenous habitat with crop and non-crop areas spanning approximately 8 square kilometers. To assess the roles of farmscapes as drivers of B. tabaci genetic variation, thirty-five populations of the sweetpotato whitefly were collected from crop and non-crop plant species from fifteen farmscapes. Using mitochondrial COI gene sequences (mtCOI) and six nuclear microsatellite markers, the genetic diversity and genetic differentiation among collected B. tabaci MEAM1 populations were examined. Haplotype analysis using mtCOI sequences revealed the presence of a single B. tabaci MEAM1 haplotype across farmscapes of Georgia. Results from microsatellite markers further showed no significant genetic structuring among populations that corresponded to plant species or farmscapes from which they were collected. Annual whitefly population explosions and subsequent dispersal might have facilitated the persistence of a single panmictic B. tabaci population over all sampled farmscapes in this region. Abstract Bemisia tabaci is a whitefly species complex comprising important phloem feeding insect pests and plant virus vectors of many agricultural crops. Middle East–Asia Minor 1 (MEAM1) and Mediterranean (MED) are the two most invasive members of the B. tabaci species complex worldwide. The diversity of agroecosystems invaded by B. tabaci could potentially influence their population structure, but this has not been assessed at a farmscape level. A farmscape in this study is defined as heterogenous habitat with crop and non-crop areas spanning ~8 square kilometers. In this study, mitochondrial COI gene (mtCOI) sequences and six microsatellite markers were used to examine the population structure of B. tabaci MEAM1 colonizing different plant species at a farmscape level in Georgia, United States. Thirty-five populations of adult whiteflies on row and vegetable crops and weeds across major agricultural regions of Georgia were collected from fifteen farmscapes. Based on morphological features and mtCOI sequences, five species/cryptic species of whiteflies (B. tabaci MEAM1, B. tabaci MED, Dialeurodes citri, Trialeurodes abutiloneus, T. vaporariorum) were found. Analysis of 102 mtCOI sequences revealed the presence of a single B. tabaci MEAM1 haplotype across farmscapes in Georgia. Population genetics analyses (AMOVA, PCA and STRUCTURE) of B. tabaci MEAM1 (microsatellite data) revealed only minimal genetic differences among collected populations within and among farmscapes. Overall, our results suggest that there is a high level of gene flow among B. tabaci MEAM1 populations among farmscapes in Georgia. Frequent whitefly population explosions driven by a single or a few major whitefly-suitable hosts planted on a wide spatial scale may be the key factor behind the persistence of a single panmictic population over Georgia’s farmscapes. These population structuring effects are useful for delineating the spatial scale at which whiteflies must be managed and predicting the speed at which alleles associated with insecticide resistance might spread.
Collapse
|
4
|
Crossley MS, Snyder WE. What Is the Spatial Extent of a Bemisia tabaci Population? INSECTS 2020; 11:E813. [PMID: 33218155 PMCID: PMC7698913 DOI: 10.3390/insects11110813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Effective pest management depends on basic knowledge about insect dispersal patterns and gene flow in agroecosystems. The globally invasive sweet potato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is considered a weak flier whose life history nonetheless predisposes it to frequent dispersal, but the scale over which populations exchange migrants, and should therefore be managed, is uncertain. In this review, we synthesize the emergent literature on B. tabaci population genetics to address the question: What spatial scales define B. tabaci populations? We find that within-species genetic differentiation among sites is often low, and evidence of population structuring by host plant or geography is rare. Heterozygote deficits prevail among populations, indicating that migrants from divergent populations are frequently sampled together. Overall, these results suggest that there is high ongoing gene flow over large spatial extents. However, genetic homogeneity typical of recently invading populations could obscure power to detect real isolation among populations. Genome-wide data collected systematically across space and time could distinguish signatures of invasion history from those of ongoing gene flow. Characterizing the spatial extent of B. tabaci populations could reveal whether insecticide rotations can be tailored to specific commodities or if coordination across linked commodities and regions is justified.
Collapse
|
5
|
Population genetic structure of Bemisia tabaci MED (Hemiptera: Aleyrodidae) in Korea. PLoS One 2019; 14:e0220327. [PMID: 31344119 PMCID: PMC6657892 DOI: 10.1371/journal.pone.0220327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022] Open
Abstract
The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a major agricultural pest that causes economic damages worldwide. In particular, B. tabaci MED (Mediterranean) has resulted in serious economic losses in tomato production of Korea. In this study, 1,145 B. tabaci MED females from 35 tomato greenhouses in different geographic regions were collected from 2016 to 2018 (17 populations in 2016, 13 in 2017, and five in 2018) and analyzed to investigate their population genetic structures using eight microsatellite markers. The average number of alleles per population (NA) ranged from 2.000 to 5.875, the expected heterozygosity (HE) ranged from 0.218 to 0.600, the observed heterozygosity (HO) ranged from 0.061 to 0.580, and the fixation index inbreeding coefficient (FIS) ranged from -0.391 to 0.872 over the three years of the study. Some significant correlation (p < 0.05) was present between genetic differentiations (FST) and geographical distance, and a comparatively high proportion of variation was found among the B. tabaci MED populations. The B. tabaci MED populations were divided into two well-differentiated genetic clusters within different geographic regions. Interestingly, its genetic structures converged into one genetic cluster during just one year. The reasons for this genetic change were speculated to arise from different fitness, insecticide resistance, and insect movement by human activities.
Collapse
|
6
|
Shadmany M, Boykin LM, Muhamad R, Omar D. Genetic Diversity of Bemisia tabaci (Hemiptera: Aleyrodidae) Species Complex Across Malaysia. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:75-84. [PMID: 30272175 DOI: 10.1093/jee/toy273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 06/08/2023]
Abstract
The tobacco whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex with members capable of inducing huge economic losses. Precise identification of members of this complex proves essential in managing existing populations and preventing new incursions. Despite records of serious outbreaks of this pest in Malaysia little is known about species status of B. tabaci in this region. To address this, a comprehensive sampling of B. tabaci from different host plants was conducted in 10 states of Malaysia from 2010 to 2012. Members of the complex were identified by sequencing partial mitochondrial cytochrome oxidase subunit I (mtCOI) gene and constructing a Bayesian phylogenetic tree. Seven putative species were identified including Asia I, Mediterranean (MED), China 1, China 2, Asia II 6, Asia II 7, and Asia II 10. The most important finding of the study is the identification of the invasive MED species from locations without previous records of this species. All putative species except Asia I and MED are recorded from Malaysia for the first time. This study provided the first introductory map of B. tabaci species composition in Malaysia and emphasizes the urgent need for further studies to assess the status of MED invasion in this country.
Collapse
Affiliation(s)
- Mohammad Shadmany
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Perth, Australia
| | - R Muhamad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Dzolkhifli Omar
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
7
|
Jacobson AL, Duffy S, Sseruwagi P. Whitefly-transmitted viruses threatening cassava production in Africa. Curr Opin Virol 2018; 33:167-176. [PMID: 30243102 DOI: 10.1016/j.coviro.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Emerging plant viruses are one of the greatest problems facing crop production worldwide, and have severe consequences in the developing world where subsistence farming is a major source of food production, and knowledge and resources for management are limited. In Africa, evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) (Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in severe pandemics that continue to spread and threaten cassava production. Identification of genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont profiles that influence vector phenotypes suggest that complex local and regional vector-virus-plant-environment interactions may be driving the evolution and epidemiology of these viruses.
Collapse
Affiliation(s)
- Alana Lynn Jacobson
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| |
Collapse
|
8
|
African ancestry of New World, Bemisia tabaci-whitefly species. Sci Rep 2018; 8:2734. [PMID: 29426821 PMCID: PMC5807539 DOI: 10.1038/s41598-018-20956-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/25/2018] [Indexed: 11/25/2022] Open
Abstract
Bemisia tabaci whitefly species are some of the world’s most devastating agricultural pests and plant-virus disease vectors. Elucidation of the phylogenetic relationships in the group is the basis for understanding their evolution, biogeography, gene-functions and development of novel control technologies. We report here the discovery of five new Sub-Saharan Africa (SSA) B. tabaci putative species, using the partial mitochondrial cytochrome oxidase 1 gene: SSA9, SSA10, SSA11, SSA12 and SSA13. Two of them, SSA10 and SSA11 clustered with the New World species and shared 84.8‒86.5% sequence identities. SSA10 and SSA11 provide new evidence for a close evolutionary link between the Old and New World species. Re-analysis of the evolutionary history of B. tabaci species group indicates that the new African species (SSA10 and SSA11) diverged from the New World clade c. 25 million years ago. The new putative species enable us to: (i) re-evaluate current models of B. tabaci evolution, (ii) recognise increased diversity within this cryptic species group and (iii) re-estimate divergence dates in evolutionary time.
Collapse
|
9
|
Genetic variability and population structure of the New World begomovirus Euphorbia yellow mosaic virus. J Gen Virol 2017; 98:1537-1551. [DOI: 10.1099/jgv.0.000784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Belabess Z, Peterschmitt M, Granier M, Tahiri A, Blenzar A, Urbino C. The non-canonical tomato yellow leaf curl virus recombinant that displaced its parental viruses in southern Morocco exhibits a high selective advantage in experimental conditions. J Gen Virol 2016; 97:3433-3445. [DOI: 10.1099/jgv.0.000633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zineb Belabess
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
- Ecole Nationale d'Agriculture de Meknès, BPS 40, Meknès, Morocco
- Faculté des Sciences de Meknès BP 11201, Avenue Zitoune, Meknès, Morocco
| | - Michel Peterschmitt
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| | - Martine Granier
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| | | | - Abdelali Blenzar
- Faculté des Sciences de Meknès BP 11201, Avenue Zitoune, Meknès, Morocco
| | - Cica Urbino
- CIRAD-INRA-SupAgro, UMR BGPI, CIRAD, TA A -54K, Campus International de Baillarguet, F-34398 Montpellier, France
| |
Collapse
|
11
|
Díaz F, Endersby NM, Hoffmann AA. Genetic structure of the whitefly Bemisia tabaci populations in Colombia following a recent invasion. INSECT SCIENCE 2015; 22:483-494. [PMID: 24753322 DOI: 10.1111/1744-7917.12129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
The whitefly Bemisia tabaci (Gennadius) is one of the most important pests causing economic losses in a variety of cropping systems around the world. This species was recently found in a coastal region of Colombia and has now spread inland. To investigate this invasive process, the genetic structure of B. tabaci was examined in 8 sampling locations from 2 infested regions (coastal, inland) using 9 microsatellite markers and the mitochondrial COI gene. The mitochondrial analysis indicated that only the invasive species of the B. tabaci complex Middle East-Asia Minor 1 (MEAM 1 known previously as biotype B) was present. The microsatellite data pointed to genetic differences among the regions and no isolation by distance within regions. The coastal region in the Caribbean appears to have been the initial point of invasion, while the inland region in the Southwest showed genetic variation among populations most likely reflecting founder events and ongoing changes associated with climatic and topographical heterogeneity. These findings have implications for tracking and managing B. tabaci.
Collapse
Affiliation(s)
- Fernando Díaz
- Department of Biology, Universidad del Valle, Cali, Colombia
| | - Nancy M Endersby
- Department of Genetics, Pest and Disease Vector Group, Bio 21 Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ary A Hoffmann
- Department of Genetics, Pest and Disease Vector Group, Bio 21 Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
12
|
Hélène D, Rémy B, Nathalie B, Anne-Laure G, Traoré RS, Jean-Michel L, Bernard R. Species and endosymbiont diversity of Bemisia tabaci (Homoptera: Aleyrodidae) on vegetable crops in Senegal. INSECT SCIENCE 2015; 22:386-398. [PMID: 24789572 DOI: 10.1111/1744-7917.12134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Bemisia tabaci-transmitted geminiviruses are one of the major threats on cassava and vegetable crops in Africa. However, to date, few studies are available on the diversity of B. tabaci and their associated endosymbionts in Africa. More than 28 species have been described in the complex of B. tabaci cryptic species; among them, 2 are invasive pests worldwide: MED and MEAM1. In order to assess the species diversity of B. tabaci in vegetable crops in Senegal, several samplings in different localities, hosts and seasons were collected and analyzed with nuclear (microsatellite) and mitochondrial (COI) markers. The bacterial endosymbiont community was also studied for each sample. Two species were detected: MED Q1 and MEAM1 B. Patterns of MED Q1 (dominance on most of the samples and sites, highest nuclear and mitochondrial diversity and broader secondary endosymbiont community: Hamiltonella, Cardinium, Wolbachia and Rickettsia), point toward a predominant resident begomovirus vector group for MED Q1 on market gardening crops. Furthermore, the lower prevalence of the second species MEAM1 B, its lower nuclear and mitochondrial diversity and a narrower secondary endosymbiont community (Hamiltonella/Rickettsia), indicate that this genetic group is exotic and results from a recent invasion in this area.
Collapse
Affiliation(s)
- Delatte Hélène
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France
| | - Baudin Rémy
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion, France
| | - Becker Nathalie
- Museum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB, UMR 7205 CNRS, UPMC, EPHE, 75005, Paris, France
| | - Girard Anne-Laure
- TECHNISEM, Zone d'activité Anjou Actiparc de Jumelles, 49160, Longué-Jumelles, France
| | | | | | | |
Collapse
|
13
|
Gauthier N, Clouet C, Perrakis A, Kapantaidaki D, Peterschmitt M, Tsagkarakou A. Genetic structure of Bemisia tabaci Med populations from home-range countries, inferred by nuclear and cytoplasmic markers: impact on the distribution of the insecticide resistance genes. PEST MANAGEMENT SCIENCE 2014; 70:1477-1491. [PMID: 24458589 DOI: 10.1002/ps.3733] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/19/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Insecticide resistance management in Bemisia tabaci is one of the main issues facing agricultural production today. An extensive survey was undertaken in five Mediterranean countries to examine the resistance status of Med B. tabaci species in its range of geographic origin and the relationship between population genetic structure and the distribution of resistance genes. The investigation combined molecular diagnostic tests, sequence and microsatellite polymorphism studies and monitoring of endosymbionts. RESULTS High frequencies of pyrethroid (L925I and T929V, VGSC gene) and organophosphate (F331W, ace1 gene) resistance mutations were found in France, Spain and Greece, but not in Morocco or Tunisia. Sequence analyses of the COI gene delineated two closely related mitochondrial groups (Q1 and Q2), which were found either sympatrically (Spain) or separately (France). Only Q1 was observed in Greece, Morocco and Tunisia. Bayesian analyses based on microsatellite loci revealed three geographically delineated genetic groups (France, Spain, Morocco/Greece/Tunisia) and high levels of genetic differentiation even between neighbouring samples. Evidence was also found for hybridisation and asymmetrical gene flow between Q1 and Q2. CONCLUSIONS Med B. tabaci is more diverse and structured than reported so far. On a large geographic scale, resistance is affected by population genetic structure, whereas on a local scale, agricultural practices appear to play a major role.
Collapse
Affiliation(s)
- Nathalie Gauthier
- IRD UMR (INRA/IRD/Cirad/Montpellier SupAgro) Centre de Biologie pour la Gestion des Populations, Montferrier-sur-Lez, France
| | | | | | | | | | | |
Collapse
|
14
|
Terraz G, Gueguen G, Arnó J, Fleury F, Mouton L. Nuclear and cytoplasmic differentiation among Mediterranean populations of Bemisia tabaci: testing the biological relevance of cytotypes. PEST MANAGEMENT SCIENCE 2014; 70:1503-1513. [PMID: 24706597 DOI: 10.1002/ps.3792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/04/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND The taxonomy of the species complex Bemisia tabaci is still an unresolved issue. Recently, phylogenetic analysis based on mtCOI identified 31 cryptic species. However, mitochondrial diversity is observed within these species, associated with distinct symbiotic bacterial communities forming associations, which here are called cytotypes. The authors investigated the biological significance of two cytotypes (Q1 and Q2) belonging to the Mediterranean species, which have only been found in allopatry in the Western Mediterranean to date. Sampling was done over a few years in Western Europe, and sympatric situations were found that allowed their reproductive compatibility to be tested in the field with the use of microsatellites. RESULTS The field survey indicated that, in spite of its recent introduction, Q2 is well established in France and Spain, where it coexists with Q1. Microsatellite data showed that, in allopatry, Q1 and Q2 are highly differentiated, while there is little or no genetic differentiation when they coexist in sympatry, suggesting a high rate of hybridisation. Crossing experiments in the lab confirmed their interfertility. CONCLUSION Q1 and Q2 hybridise, which confirms that they belong to the same species, in spite of the high degree of genetic differentiation at both the cytoplasmic and nuclear levels, and also suggests that their symbiotic bacteria do not prevent hybridisation.
Collapse
Affiliation(s)
- Gabriel Terraz
- Laboratoire de Biométrie et Biologie Evolutive, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | | | | | | | | |
Collapse
|