1
|
Volzke S, Cleeland JB, Hindell MA, Corney SP, Wotherspoon SJ, McMahon CR. Extreme polygyny results in intersex differences in age-dependent survival of a highly dimorphic marine mammal. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221635. [PMID: 36968236 PMCID: PMC10031410 DOI: 10.1098/rsos.221635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Developmental differences in vital rates are especially profound in polygamous mating systems. Southern elephant seals (Mirounga leonina) are highly dimorphic and extremely polygynous marine mammals. A demographic model, supported by long-term capture-mark-recapture records, investigated the influence of sex and age on survival in this species. The study revealed clear differences between female and male age-dependent survival rates. Overall juvenile survival estimates were stable around 80-85% for both sexes. However, male survival estimates were 5-10% lower than females in the same age classes until 8 years of age. At this point, male survival decreased rapidly to 50% ± 10% while female estimates remained constant at 80% ± 5%. Different energetic requirements could underpin intersex differences in adult survival. However, the species' strong sexual dimorphism diverges during early juvenile development when sex-specific survival rates were less distinct. Maximizing growth is especially advantageous for males, with size being a major determinant of breeding probability. Maturing males may employ a high-risk high-reward foraging strategy to compensate for extensive sexual selection pressures and sex-specific energetic needs. Our findings suggest sex-specific adult survival is a result of in situ ecological interactions and evolutionary specialization associated with being a highly polygynous marine predator.
Collapse
Affiliation(s)
- Sophia Volzke
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, TAS 7050, Australia
| | - Jaimie B. Cleeland
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, TAS 7050, Australia
| | - Mark A. Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia
| | - Stuart P. Corney
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, TAS 7005, Australia
- Australian Antarctic Partnership Program, University of Tasmania, Hobart, TAS 7005, Australia
| | - Simon J. Wotherspoon
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, TAS 7050, Australia
| | - Clive R. McMahon
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia
- IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
| |
Collapse
|
2
|
Allegue H, Réale D, Picard B, Guinet C. Track and dive-based movement metrics do not predict the number of prey encountered by a marine predator. MOVEMENT ECOLOGY 2023; 11:3. [PMID: 36681811 PMCID: PMC9862577 DOI: 10.1186/s40462-022-00361-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/17/2022] [Indexed: 06/08/2023]
Abstract
BACKGROUND Studying animal movement in the context of the optimal foraging theory has led to the development of simple movement metrics for inferring feeding activity. Yet, the predictive capacity of these metrics in natural environments has been given little attention, raising serious questions of the validity of these metrics. The aim of this study is to test whether simple continuous movement metrics predict feeding intensity in a marine predator, the southern elephant seal (SES; Mirounga leonine), and investigate potential factors influencing the predictive capacity of these metrics. METHODS We equipped 21 female SES from the Kerguelen Archipelago with loggers and recorded their movements during post-breeding foraging trips at sea. From accelerometry, we estimated the number of prey encounter events (nPEE) and used it as a reference for feeding intensity. We also extracted several track- and dive-based movement metrics and evaluated how well they explain and predict the variance in nPEE. We conducted our analysis at two temporal scales (dive and day), with two dive profile resolutions (high at 1 Hz and low with five dive segments), and two types of models (linear models and regression trees). RESULTS We found that none of the movement metrics predict nPEE with satisfactory power. The vertical transit rates (primarily the ascent rate) during dives had the best predictive performance among all metrics. Dive metrics performed better than track metrics and all metrics performed on average better at the scale of days than the scale of dives. However, the performance of the models at the scale of days showed higher variability among individuals suggesting distinct foraging tactics. Dive-based metrics performed better when computed from high-resolution dive profiles than low-resolution dive profiles. Finally, regression trees produced more accurate predictions than linear models. CONCLUSIONS Our study reveals that simple movement metrics do not predict feeding activity in free-ranging marine predators. This could emerge from differences between individuals, temporal scales, and the data resolution used, among many other factors. We conclude that these simple metrics should be avoided or carefully tested a priori with the studied species and the ecological context to account for significant influencing factors.
Collapse
Affiliation(s)
- Hassen Allegue
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.
| | - Denis Réale
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Baptiste Picard
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, Villiers en Bois, France
| |
Collapse
|
3
|
Movements of southern elephant seals (Mirounga leonina) from Davis Base, Antarctica: combining population genetics and tracking data. Polar Biol 2022. [DOI: 10.1007/s00300-022-03058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractMarine animals such as the southern elephant seal (Mirounga leonina) rely on a productive marine environment and are vulnerable to oceanic changes that can affect their reproduction and survival rates. Davis Base, Antarctica, acts as a moulting site for southern elephant seals that forage in Prydz Bay, but the mitochondrial haplotype diversity and natal source populations of these seals have not been characterized. In this study, we combined genetic and animal tracking data on these moulting seals to identify levels of mitochondrial haplotype diversity, natal source population, and movement behaviours during foraging and haul-out periods. Using partial sequences of the mitochondrial control region, we identified two major breeding mitochondrial lineages of seals at Davis Base. We found that the majority of the seals originated from breeding stocks within the South Atlantic Ocean and South Indian Ocean. One seal was grouped with the Macquarie Island breeding stock (South Pacific Ocean). The Macquarie Island population, unlike the other two stocks, is decreasing in size. Tracking data revealed long-distance foraging activity of the Macquarie Island seal around Crozet Islands. We speculate that changes to the Antarctic marine environment can result in a shift in foraging and movement strategies, which subsequently affects seal population growth rates.
Collapse
|
4
|
Arce F, Hindell MA, McMahon CR, Wotherspoon SJ, Guinet C, Harcourt RG, Bestley S. Elephant seal foraging success is enhanced in Antarctic coastal polynyas. Proc Biol Sci 2022; 289:20212452. [PMID: 35078353 PMCID: PMC8790345 DOI: 10.1098/rspb.2021.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 01/28/2023] Open
Abstract
Antarctic polynyas are persistent open water areas which enable early and large seasonal phytoplankton blooms. This high primary productivity, boosted by iron supply from coastal glaciers, attracts organisms from all trophic levels to form a rich and diverse community. How the ecological benefit of polynya productivity is translated to the highest trophic levels remains poorly resolved. We studied 119 southern elephant seals feeding over the Antarctic shelf and demonstrated that: (i) 96% of seals foraging here used polynyas, with individuals spending on average 62% of their time there; (ii) the seals exhibited more area-restricted search behaviour when in polynyas; and (iii) these seals gained more energy (indicated by increased buoyancy from greater fat stores) when inside polynyas. This higher-quality foraging existed even when ice was not present in the study area, indicating that these are important and predictable foraging grounds year-round. Despite these energetic advantages from using polynyas, not all the seals used them extensively. Factors other than food supply may influence an individual's choice in their use of feeding grounds, such as exposure to predation or the probability of being able to return to distant sub-Antarctic breeding sites.
Collapse
Affiliation(s)
- Fernando Arce
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
- Australian Antarctic Division, 203 Channel Highway, Kingston, TAS 7050, Australia
| | - Mark A. Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
| | - Clive R. McMahon
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
- IMOS Animal Tagging, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| | - Simon J. Wotherspoon
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
- Australian Antarctic Division, 203 Channel Highway, Kingston, TAS 7050, Australia
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, CNRS, Villiers en Bois 79360, France
| | - Robert G. Harcourt
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| | - Sophie Bestley
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129 Hobart, TAS 7001, Australia
| |
Collapse
|
5
|
Allegue H, Guinet C, Patrick SC, Hindell MA, McMahon CR, Réale D. Sex, body size, and boldness shape the seasonal foraging habitat selection in southern elephant seals. Ecol Evol 2022; 12:e8457. [PMID: 35127010 PMCID: PMC8796948 DOI: 10.1002/ece3.8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022] Open
Abstract
Selecting foraging habitat is a fundamental behavior in the life of organisms as it directly links resource acquisition to fitness. Differences in habitat selection among individuals may arise from several intrinsic and extrinsic factors, and yet, their interaction has been given little attention in the study of wild populations. We combine sex, body size, and boldness to explain individual differences in the seasonal foraging habitat selection of southern elephant seals (Mirounga leonina) from the Kerguelen Archipelago. We hypothesize that habitat selection is linked to the trade-off between resource acquisition and risk, and that individuals differ in their position along this trade-off because of differences in reproductive strategies, life stages, and metabolic requirements. Before the post-molt foraging trip, we used a novel object approach test to quantify the boldness of 28 subadult and adult females and 42 subadult males and equipped them with data loggers to track their movements at sea. Subadult males selected neritic and oceanic habitats, whereas females mostly selected less productive oceanic habitats. Both sexes showed a seasonal shift from Antarctic habitats in the south in the summer to the free of ice subantarctic and subtropical habitats in the north in the winter. Males avoided oceanic habitats and selected more productive neritic and Antarctic habitats with body size mostly in the winter. Bolder males selected northern warmer waters in winter, while shyer ones selected the Kerguelen plateau and southern colder oceanic waters. Bolder females selected the Kerguelen plateau in the summer when prey profitability is assumed to be the highest. This study not only provides new insights into the spatiotemporal foraging ecology of elephant seals in relation to personality but also emphasizes the relevance of combining several intrinsic and extrinsic factors in understanding among-individual variation in space use essential in wildlife management and conservation.
Collapse
Affiliation(s)
- Hassen Allegue
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQCCanada
| | | | | | - Mark A. Hindell
- Institute for Marine and Antarctic StudiesBattery PointTASAustralia
- Antarctic Climate and Ecosystems Cooperative Research CentreUniversity of TasmaniaHobartTASAustralia
| | - Clive R. McMahon
- Institute for Marine and Antarctic StudiesBattery PointTASAustralia
- Sydney Institute of Marine ScienceSydneyNSWAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Denis Réale
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQCCanada
| |
Collapse
|
6
|
Kienle SS, Friedlaender AS, Crocker DE, Mehta RS, Costa DP. Trade-offs between foraging reward and mortality risk drive sex-specific foraging strategies in sexually dimorphic northern elephant seals. ROYAL SOCIETY OPEN SCIENCE 2022; 9:210522. [PMID: 35116140 PMCID: PMC8767210 DOI: 10.1098/rsos.210522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/14/2021] [Indexed: 05/04/2023]
Abstract
Sex-specific phenotypic differences are widespread throughout the animal kingdom. Reproductive advantages provided by trait differences come at a cost. Here, we link sex-specific foraging strategies to trade-offs between foraging reward and mortality risk in sexually dimorphic northern elephant seals (Mirounga angustirostris). We analyse a decadal dataset on movement patterns, dive behaviour, foraging success and mortality rates. Females are deep-diving predators in open ocean habitats. Males are shallow-diving benthic predators in continental shelf habitats. Males gain six times more mass and acquire energy 4.1 times faster than females. High foraging success comes with a high mortality rate. Males are six times more likely to die than females. These foraging strategies and trade-offs are related to different energy demands and life-history strategies. Males use a foraging strategy with a high mortality risk to attain large body sizes necessary to compete for females, as only a fraction of the largest males ever mate. Females use a foraging strategy with a lower mortality risk, maximizing reproductive success by pupping annually over a long lifespan. Our results highlight how sex-specific traits can drive disparity in mortality rates and expand species' niche space. Further, trade-offs between foraging rewards and mortality risk can differentially affect each sex's ability to maximize fitness.
Collapse
Affiliation(s)
- Sarah S. Kienle
- Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
- Department of Biology, Baylor University, One Bear Place #97399, Waco, TX 76798, USA
| | - Ari S. Friedlaender
- Ocean Science, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Daniel E. Crocker
- Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA
| | - Rita S. Mehta
- Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Daniel P. Costa
- Ecology and Evolutionary Biology, University of California, 130 McAllister Way, Santa Cruz, CA 95060, USA
| |
Collapse
|
7
|
Volzke S, McMahon CR, Hindell MA, Burton HR, Wotherspoon SJ. Climate influences on female survival in a declining population of southern elephant seals ( Mirounga leonina). Ecol Evol 2021; 11:11333-11344. [PMID: 34429922 PMCID: PMC8366891 DOI: 10.1002/ece3.7919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022] Open
Abstract
The Southern Ocean has been disproportionately affected by climate change and is therefore an ideal place to study the influence of changing environmental conditions on ecosystems. Changes in the demography of predator populations are indicators of broader shifts in food web structure, but long-term data are required to study these effects. Southern elephant seals (Mirounga leonina) from Macquarie Island have consistently decreased in population size while all other major populations across the Southern Ocean have recently stabilized or are increasing. Two long-term mark-recapture studies (1956-1967 and 1993-2009) have monitored this population, which provides an opportunity to investigate demographic performance over a range of climatic conditions. Using a 9-state matrix population model, we estimated climate influences on female survival by incorporating two major climatic indices into our model: The Southern Annular Mode (SAM) and the Southern Oscillation Index (SOI). Our best model included a 1 year lagged effect of SAM and an unlagged SOI as covariates. A positive relationship with SAM1 (lagged) related the previous year's SAM with juvenile survival, potentially due to changes in local prey availability surrounding Macquarie Island. The unlagged SOI had a negative effect on both juvenile and adult seals, indicating that sea ice dynamics and access to foraging grounds on the East Antarctic continental shelf could explain the different contributions of ENSO events on the survival of females in this population.
Collapse
Affiliation(s)
- Sophia Volzke
- Institute for Marine & Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
| | - Clive R. McMahon
- Institute for Marine & Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
- IMOS Animal TaggingSydney Institute of Marine ScienceMosmanNSWAustralia
| | - Mark A. Hindell
- Institute for Marine & Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
- Antarctic Climate and Ecosystems Cooperative Research CentreUniversity of TasmaniaHobartTas.Australia
| | - Harry R. Burton
- Australian Antarctic DivisionDepartment of Agriculture, Water and the EnvironmentKingstonTas.Australia
| | - Simon J. Wotherspoon
- Institute for Marine & Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
- Australian Antarctic DivisionDepartment of Agriculture, Water and the EnvironmentKingstonTas.Australia
| |
Collapse
|