1
|
Ramon-Gomez K, Ron SR, Deem SL, Pike KN, Stevens C, Izurieta JC, Nieto-Claudin A. Plastic ingestion in giant tortoises: An example of a novel anthropogenic impact for Galapagos wildlife. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122780. [PMID: 37863249 DOI: 10.1016/j.envpol.2023.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
The human population of Galapagos has rapidly increased in the last decades accelerating the anthropogenic pressures on the archipelago's natural resources. The growing human footprint, including inadequate management of garbage, may lead to conservation conflicts. Here, we assessed the ingestion of debris by Western Santa Cruz giant tortoises (Chelonoidis porteri) within human-modified and protected areas. Additionally, we characterized environmental debris and quantified tortoise abundance together with tortoise fecal samples. We processed a total of 6629 fecal samples along a gradient of anthropogenic disturbance based on human debris presence. We found 590 pieces of debris in samples within human-modified areas (mean of 3.97 items/kg of feces) and only two pieces in the protected area (mean of 0.08 items/kg of feces). Plastic waste was the predominant category in feces within the anthropic area (86.3%; n = 511), followed by cloth, metal, paper, synthetic rubber, construction materials, and glass. On average, the proportion of plastic was higher in feces (84%) than it was in environmental debris (67%), denoting that plastics are more readily ingested than other types of debris. We also found that green, white, and light blue plastics were consumed more often than their prevalence in the environment, suggesting color discrimination. Tortoise abundance was higher in the protected area when compared to the human-modified area; however, recapture rates were higher in anthropized landscapes which increases tortoise exposure to plastics and other human associated threats. Our results indicate that plastics are frequently consumed by tortoises in the polluted anthropic areas of western Santa Cruz, but scarce in protected areas. More research is needed to understand the negative impacts associated with plastics for Galapagos terrestrial species. We encourage local stakeholders to implement current policies limiting expansion of urban areas, plastic use, and improving waste management systems to minimize threats to human and animal health.
Collapse
Affiliation(s)
- Karina Ramon-Gomez
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador; Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sharon L Deem
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador; Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO, 63110, USA
| | - Kyana N Pike
- College of Science and Engineering, James Cook University, Townsville, 4810, Australia
| | - Colton Stevens
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador
| | - Juan Carlos Izurieta
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador
| | - Ainoa Nieto-Claudin
- Charles Darwin Foundation, Charles Darwin Avenue, Santa Cruz, 200350, Galapagos Islands, Ecuador; Saint Louis Zoo Institute for Conservation Medicine, One Government Drive, Saint Louis, MO, 63110, USA; Complutense University of Madrid, Veterinary Faculty, Puerta de Hierro Av, Madrid, 28040, Spain.
| |
Collapse
|
2
|
Knutie SA, Webster CN, Vaziri GJ, Albert L, Harvey JA, LaRue M, Verrett TB, Soldo A, Koop JAH, Chaves JA, Wegrzyn JL. Urban living can rescue Darwin's finches from the lethal effects of invasive vampire flies. GLOBAL CHANGE BIOLOGY 2024; 30:e17145. [PMID: 38273516 DOI: 10.1111/gcb.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.
Collapse
Affiliation(s)
- Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Cynthia N Webster
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Grace J Vaziri
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Johanna A Harvey
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Michelle LaRue
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Taylor B Verrett
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Alexandria Soldo
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer A H Koop
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Solomon G, Love AC, Vaziri GJ, Harvey J, Verrett T, Chernicky K, Simons S, Albert L, Chaves JA, Knutie SA. Effect of urbanization and parasitism on the gut microbiota of Darwin's finch nestlings. Mol Ecol 2023; 32:6059-6069. [PMID: 37837269 DOI: 10.1111/mec.17164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Host-associated microbiota can be affected by factors related to environmental change, such as urbanization and invasive species. For example, urban areas often affect food availability for animals, which can change their gut microbiota. Invasive parasites can also influence microbiota through competition or indirectly through a change in the host immune response. These interacting factors can have complex effects on host fitness, but few studies have disentangled the relationship between urbanization and parasitism on an organism's gut microbiota. To address this gap in knowledge, we investigated the effects of urbanization and parasitism by the invasive avian vampire fly (Philornis downsi) on the gut microbiota of nestling small ground finches (Geospiza fuliginosa) on San Cristóbal Island, Galápagos. We conducted a factorial study in which we experimentally manipulated parasite presence in an urban and nonurban area. Faeces were then collected from nestlings to characterize the gut microbiota (i.e. bacterial diversity and community composition). Although we did not find an interactive effect of urbanization and parasitism on the microbiota, we did find main effects of each variable. We found that urban nestlings had lower bacterial diversity and different relative abundances of taxa compared to nonurban nestlings, which could be mediated by introduction of the microbiota of the food items or changes in host physiology. Additionally, parasitized nestlings had lower bacterial richness than nonparasitized nestlings, which could be mediated by a change in the immune system. Overall, this study advances our understanding of the complex effects of anthropogenic stressors on the gut microbiota of birds.
Collapse
Affiliation(s)
- Gabrielle Solomon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Ashley C Love
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Grace J Vaziri
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Johanna Harvey
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Taylor Verrett
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Kiley Chernicky
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Shelby Simons
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
| | - Jaime A Chaves
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Galapagos Science Center, Puerto Baquerizo Moreno, Galapagos, Ecuador
- Department of Biology, San Francisco State University, California, San Francisco, USA
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Connecticut, Storrs, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Institute for Systems Genomics, University of Connecticut, Connecticut, Storrs, USA
| |
Collapse
|
4
|
Jagiello Z, Reynolds SJ, Nagy J, Mainwaring MC, Ibáñez-Álamo JD. Why do some bird species incorporate more anthropogenic materials into their nests than others? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220156. [PMID: 37427475 PMCID: PMC10331902 DOI: 10.1098/rstb.2022.0156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 07/11/2023] Open
Abstract
Many bird species incorporate anthropogenic materials (e.g. sweet wrappers, cigarette butts and plastic strings) into their nests. Anthropogenic materials have become widely available as nesting materials in marine and terrestrial environments globally. These human-made objects can provide important benefits to birds such as serving as reliable signals to conspecifics or protecting against ectoparasites, but they can also incur fundamental survival and energetic costs via offspring entanglement and reduced insulative properties, respectively. From an ecological perspective, several hypotheses have been proposed to explain the use of anthropogenic nest materials (ANMs) by birds but no previous interspecific study has tried to identify the underlying mechanisms of this behaviour. In this study, we performed a systematic literature search and ran phylogenetically controlled comparative analyses to examine interspecific variation in the use of ANM and to examine the influence of several ecological and life-history traits. We found that sexual dimorphism and nest type significantly influenced the use of ANMs by birds providing support for the 'signalling hypothesis' that implies that ANMs reflect the quality of the nest builder. However, we found no support for the 'age' and 'new location' hypotheses, nor for a phylogenetic pattern in this behaviour, suggesting that it is widespread throughout birds. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.
Collapse
Affiliation(s)
- Zuzanna Jagiello
- Department of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland
- Department of Zoology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| | - S. James Reynolds
- Centre for Ornithology, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- The Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire GU11 1PS, UK
| | - Jenő Nagy
- ELKH-DE Conservation Biology Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mark C. Mainwaring
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
| | - Juan D. Ibáñez-Álamo
- Department of Zoology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
5
|
Alava JJ, McMullen K, Jones J, Barragán-Paladines MJ, Hobbs C, Tirapé A, Calle P, Alarcón D, Muñoz-Pérez JP, Muñoz-Abril L, Townsend KA, Denkinger J, Uyaguari M, Domínguez GA, Espinoza E, Reyes H, Piedrahita P, Fair P, Galloway T, Grove JS, Lewis C, Schofield J. Multiple anthropogenic stressors in the Galápagos Islands' complex social-ecological system: Interactions of marine pollution, fishing pressure, and climate change with management recommendations. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022. [PMID: 35893578 DOI: 10.1002/ieam.4661] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
For decades, multiple anthropogenic stressors have threatened the Galápagos Islands. Widespread marine pollution such as oil spills, persistent organic pollutants, metals, and ocean plastic pollution has been linked to concerning changes in the ecophysiology and health of Galápagos species. Simultaneously, illegal, unreported, and unregulated fishing are reshaping the composition and structure of endemic and native Galápagos pelagic communities. In this novel review, we discuss the impact of anthropogenic pollutants and their associated ecotoxicological implications for Galápagos species in the face of climate change stressors. We emphasize the importance of considering fishing pressure and marine pollution, in combination with climate-change impacts, when assessing the evolutionary fitness of species inhabiting the Galápagos. For example, the survival of endemic marine iguanas has been negatively affected by organic hydrocarbons introduced via oil spills, and endangered Galápagos sea lions exhibit detectable concentrations of DDT, triggering potential feminization effects and compromising the species' survival. During periods of ocean warming (El Niño events) when endemic species undergo nutritional stress, climate change may increase the vulnerability of these species to the impacts of pollutants, resulting in the species reaching its population tipping point. Marine plastics are emerging as a deleterious and widespread threat to endemic species. The Galápagos is treasured for its historical significance and its unparalleled living laboratory and display of evolutionary processes; however, this unique and iconic paradise will remain in jeopardy until multidisciplinary and comprehensive preventative management plans are put in place to mitigate and eliminate the effects of anthropogenic stressors facing the islands today. We present a critical analysis and synthesis of anthropogenic stressors with some progress from local and international institutional efforts and call to action more precautionary measures along with new management philosophies focused on understanding the processes of change through research to champion the conservation of the Galápagos. Integr Environ Assess Manag 2022;00:1-26. © 2022 SETAC.
Collapse
Affiliation(s)
- Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Karly McMullen
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Jen Jones
- Galápagos Conservation Trust, London, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | | | - Catherine Hobbs
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Ana Tirapé
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Paola Calle
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Daniela Alarcón
- Universidad San Francisco de Quito (USFQ) & UNC-Chapel Hill Galápagos Science Center (GSC) Av. Alsacio Northia, Isla San Cristóbal, Galápagos, Ecuador
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Hervey Bay, QLD, Australia
| | - Juan Pablo Muñoz-Pérez
- Universidad San Francisco de Quito (USFQ) & UNC-Chapel Hill Galápagos Science Center (GSC) Av. Alsacio Northia, Isla San Cristóbal, Galápagos, Ecuador
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Hervey Bay, QLD, Australia
| | - Laia Muñoz-Abril
- Universidad San Francisco de Quito (USFQ) & UNC-Chapel Hill Galápagos Science Center (GSC) Av. Alsacio Northia, Isla San Cristóbal, Galápagos, Ecuador
- Facultad de Ciencias del Mar, Universidad Estatal Península de Santa Elena (UPSE), Santa Elena, Ecuador
| | - Kathy Ann Townsend
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Hervey Bay, QLD, Australia
| | - Judith Denkinger
- Universidad San Francisco de Quito (USFQ) & UNC-Chapel Hill Galápagos Science Center (GSC) Av. Alsacio Northia, Isla San Cristóbal, Galápagos, Ecuador
| | - Miguel Uyaguari
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Gustavo A Domínguez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Eduardo Espinoza
- Direccion del Parque Nacional Galápagos (Galápagos National Park), Ministerio del Ambiente, Puerto Ayora, Santa Cruz, Galápagos, Ecuador
| | - Harry Reyes
- Direccion del Parque Nacional Galápagos (Galápagos National Park), Ministerio del Ambiente, Puerto Ayora, Santa Cruz, Galápagos, Ecuador
| | - Paolo Piedrahita
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Patricia Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tamara Galloway
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jack Stein Grove
- Galápagos Education & Research Alliance, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ceri Lewis
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | | |
Collapse
|
6
|
Lever D, Rush LV, Thorogood R, Gotanda KM. Darwin's small and medium ground finches might have taste preferences, but not for human foods. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211198. [PMID: 35116148 PMCID: PMC8790341 DOI: 10.1098/rsos.211198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Urbanization is rapidly changing ecological niches. On the inhabited Galapagos Islands, Darwin's finches consume human-introduced foods preferentially; however, it remains unclear why. Here, we presented pastry with flavour profiles typical of human foods (oily, salty and sweet) to small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis) to test if latent taste preferences might drive the selection of human foods. If human food flavours were consumed more than a neutral or bitter control only at sites with human foods, then we predicted tastes were acquired after urbanization; however, if no site differences were found then this would indicate latent taste preferences. Contrary to both predictions, we found little evidence that human food flavours were preferred compared with control flavours at any site. Instead, finches showed a weak aversion to oily foods, but only at remote (no human foods present) sites. This was further supported by behavioural responses, with beak-wiping occurring more often at remote sites after finches tasted flavours associated with human foods. Our results suggest, therefore, that while Darwin's finches regularly exposed to human foods might have acquired a tolerance to human food flavours, latent taste preferences are unlikely to have played a major role in their dietary response to increased urbanization.
Collapse
Affiliation(s)
- D. Lever
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - L. V. Rush
- Department of Geology, Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario P3E 2C6, Canada
| | - R. Thorogood
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Helsinki Institute of Life Science (HiLIFE), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
- Research Program in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - K. M. Gotanda
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Départment de Biologie, Université de Sherbrooke, 2500, boul de l'Université, Sherbrooke, Québec J1K 2R1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharine's, Ontario L2S 3A1, Canada
| |
Collapse
|
7
|
Ikeda Y, Motokawa M. Phylogeography of the Japanese greater horseshoe bat Rhinolophus nippon (Mammalia: Chiroptera) in Northeast Asia: New insight into the monophyly of the Japanese populations. Ecol Evol 2021; 11:18181-18195. [PMID: 35003666 PMCID: PMC8717313 DOI: 10.1002/ece3.8414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
The Japanese greater horseshoe bat (Rhinolophus nippon) is distributed widely in East Asia. Within the species, R. nippon in Northeast Asia is regarded as the lineage that diverged most recently. However, the monophyly of the Japanese populations is unclear due to insufficient data about phylogenetic relationship of the western Japanese populations. To test the monophyly of the Japanese populations of R. nippon, we sampled R. nippon from western Japan and performed a phylogeographic analysis based on mitochondrial DNA cytochrome b and the D-loop. The Northeast Asian lineage consisted of three main clades in eastern Japan (clade I), western Japan (clade II), and the continent as well as the Kumamoto population in westernmost Japan (clade III). The results of this study do not support the monophyly of the Japanese population. The findings suggest the "reverse colonization" of R. nippon from the Japanese Archipelago to the Eurasian continent, and provide important insight into the role of the island system in creation and supply of diversity to the continent.
Collapse
Affiliation(s)
- Yugo Ikeda
- Graduate School of ScienceKyoto UniversitySakyoKyotoJapan
| | | |
Collapse
|
8
|
Rivkin LR, Johnson RA, Chaves JA, Johnson MTJ. Urbanization alters interactions between Darwin's finches and Tribulus cistoides on the Galápagos Islands. Ecol Evol 2021; 11:15754-15765. [PMID: 34824787 PMCID: PMC8601916 DOI: 10.1002/ece3.8236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that humans shape the ecology and evolution of species interactions. Islands are particularly susceptible to anthropogenic disturbance due to the fragility of their ecosystems; however, we know little about the susceptibility of species interactions to urbanization on islands. To address this gap, we studied how the earliest stages of urban development affect interactions between Darwin's finches and its key food resource, Tribulus cistoides, in three towns on the Galápagos Islands. We measured variation in mericarp predation rates, mericarp morphology, and finch community composition using population surveys, experimental manipulations, and finch observations conducted in habitats within and outside of each town. We found that both seed and mericarp removal rates were higher in towns than natural habitats. We also found that selection on mericarp size and defense differed between habitats in the survey and experimental populations and that towns supported smaller and less diverse finch communities than natural habitats. Together, our results suggest that even moderate levels of urbanization can alter ecological interactions between Darwin's finches and T. cistoides, leading to modified natural selection on T. cistoides populations. Our study demonstrates that trophic interactions on islands may be susceptible to the anthropogenic disturbance associated with urbanization. Despite containing the highest diversity in the world, studies of urbanization are lacking from the tropics. Our study identified signatures of urbanization on species interactions in a tropical island ecosystem and suggests that changes to the ecology of species interactions has the potential to alter evolution in urban environments.
Collapse
Affiliation(s)
- L. Ruth Rivkin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of BiologyUniversity of Toronto MississaugaOntarioCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaOntarioCanada
| | | | - Jaime A. Chaves
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de QuitoQuitoEcuador
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
| | - Marc T. J. Johnson
- Department of BiologyUniversity of Toronto MississaugaOntarioCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaOntarioCanada
| |
Collapse
|
9
|
Potvin DA, Opitz F, Townsend KA, Knutie SA. Use of anthropogenic-related nest material and nest parasite prevalence have increased over the past two centuries in Australian birds. Oecologia 2021; 196:1207-1217. [PMID: 34236465 DOI: 10.1007/s00442-021-04982-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
Global plastic production has increased exponentially since the 1940s, resulting in the increased presence of anthropogenic debris in the environment. Recent studies have shown that birds incorporate anthropogenic debris into their nests, which can reduce nest ectoparasite loads. However, we know little about the long-term history of interactions among birds, anthropogenic debris, and ectoparasites. Our study took a unique approach to address this issue by determining the prevalence of anthropogenic debris and ectoparasitic nest flies (Protocalliphora and Passeromyia spp.) in 893 bird nests from 224 species between 1832 and 2018, which were sourced from Australian museum collections. The prevalence of anthropogenic material increased from approximately 4% in 1832 to almost 30% in 2018. This change was driven by an increase in the incorporation of synthetic rather than biodegradable anthropogenic debris (by 2018 ~ 25% of all nests contained synthetics), with the first synthetic item being found in a nest from 1956 in the city of Melbourne. Nest parasite prevalence increased over time but contrary to other studies, there was no relationship between habitat type or anthropogenic material and parasite presence. Our study is the first to use museum specimens to quantify temporal and spatial impacts of anthropogenic material on birds, the results of which justifies contemporary concerns regarding the ubiquitous nature of human impacts on terrestrial wildlife.
Collapse
Affiliation(s)
- Dominique A Potvin
- University of the Sunshine Coast, Moreton Bay Campus, Petrie, Australia.
| | | | - Kathy A Townsend
- University of the Sunshine Coast, Fraser Coast Campus, Hervey Bay, Australia
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
10
|
Ohmer MEB, Costantini D, Czirják GÁ, Downs CJ, Ferguson LV, Flies A, Franklin CE, Kayigwe AN, Knutie S, Richards-Zawacki CL, Cramp RL. Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. CONSERVATION PHYSIOLOGY 2021; 9:coab074. [PMID: 34512994 PMCID: PMC8422949 DOI: 10.1093/conphys/coab074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/11/2023]
Abstract
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
Collapse
Affiliation(s)
- Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, MO 63130, USA
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, 57 Rue Cuvier, CP32, 75005, Paris, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andy Flies
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
| | - Ahab N Kayigwe
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Sarah Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268, USA
| | | | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|