1
|
Xiao Y, Wang X, He Z, Lv Y, Zhang C, Hu X. Assessing the phylogenetic relationship among varieties of Toona ciliata (Meliaceae) in sympatry with chloroplast genomes. Ecol Evol 2023; 13:e10828. [PMID: 38094154 PMCID: PMC10716671 DOI: 10.1002/ece3.10828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 07/03/2024] Open
Abstract
Toona ciliata is an endangered species due to over-cutting and low natural regeneration in China. Its genetic conservation is of an increasing concern. However, several varieties are recognized according to the leaf and flower traits, which complicates genetic conservation of T. ciliata. Here, we sequenced the whole chloroplast genome sequences of three samples for each of four varieties (T. ciliata var. ciliata, T. ciliata var. yunnanensis, T. ciliata var. pubescens, and T. ciliata var. henryi) in sympatry and assessed their phylogenetic relationship at a fine spatial scale. The four varieties had genome sizes ranged from 159,546 to 159,617 bp and had small variations in genome structure. Phylogenomic analysis indicated that the four varieties were genetically well-mixed in branch groups. Genetic diversity from the whole chloroplast genome sequences of 12 samples was low among varieties (average π = 0.0003). Besides, we investigated genetic variation of 58 samples of the four varieties in sympatry using two markers (psaA and trnL-trnF) and showed that genetic differentiation was generally insignificant among varieties (Ф st = 0%-5%). Purifying selection occurred in all protein-coding genes except for the ycf2 gene that was under weak positive selection. Most amino acid sites in all protein-coding genes were under purifying selection except for a few sites that were under positive selection. The chloroplast genome-based phylogeny did not support the morphology-based classification. The overall results implicated that a conservation strategy based on the T. ciliata complex rather than on intraspecific taxon was more appropriate.
Collapse
Affiliation(s)
- Yu Xiao
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Xi Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Zi‐Han He
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Yan‐Wen Lv
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| | - Chun‐Hua Zhang
- Institute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| | - Xin‐Sheng Hu
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant GermplasmGuangzhouChina
| |
Collapse
|
2
|
Chang J, Nakamura K, Chao C, Luo M, Liao P. Ghost introgression facilitates genomic divergence of a sympatric cryptic lineage in Cycas revoluta. Ecol Evol 2023; 13:e10435. [PMID: 37600490 PMCID: PMC10439367 DOI: 10.1002/ece3.10435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
A cryptic lineage is a genetically diverged but morphologically unrecognized variant of a known species. Clarifying cryptic lineage evolution is essential for quantifying species diversity. In sympatric cryptic lineage divergence compared with allopatric divergence, the forces of divergent selection and mating patterns override geographical isolation. Introgression, by supplying preadapted or neutral standing genetic variations, can promote sympatric cryptic lineage divergence via selection. However, most studies concentrated on extant species introgression, ignoring the genetic legacy of introgression from extinct or unsampled lineages ("ghost introgression"). Cycads are an ideal plant for studying the influence of ghost introgression because of their common interspecific gene flow and past high extinction rate. Here, we utilized reference-based ddRADseq to clarify the role of ghost introgression in the evolution of a previously identified sympatric cryptic lineage in Cycas revoluta. After re-evaluating the evolutionary independency of cryptic lineages, the group-wise diverged single-nucleotide polymorphisms among sympatric and allopatric lineages were compared and functionally annotated. Next, we employed an approximate Bayesian computation method for hypothesis testing to clarify the cryptic lineage evolution and ghost introgression effect. SNPs with the genomic signatures of ghost introgression were further annotated. Our results reconfirmed the evolutionary independency of cryptic lineage among C. revoluta and demonstrated that ghost introgression to the noncryptic lineage facilitated their divergence. Gene function related to heat stress and disease resistance implied ecological adaptation of the main extant populations of C. revoluta.
Collapse
Affiliation(s)
- Jui‐Tse Chang
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Koh Nakamura
- Botanic Garden, Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
| | - Chien‐Ti Chao
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Min‐Xin Luo
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Pei‐Chun Liao
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Kolis KM, Berg CS, Nelson TC, Fishman L. Population genomic consequences of life-history and mating system adaptation to a geothermal soil mosaic in yellow monkeyflowers. Evolution 2022; 76:765-781. [PMID: 35266558 DOI: 10.1111/evo.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
Abstract
Local selection can promote phenotypic divergence despite gene flow across habitat mosaics, but adaptation itself may generate substantial barriers to genetic exchange. In plants, life-history, phenology, and mating system divergence have been proposed to promote genetic differentiation in sympatry. In this study, we investigate phenotypic and genetic variation in Mimulus guttatus (yellow monkeyflowers) across a geothermal soil mosaic in Yellowstone National Park (YNP). Plants from thermal annual and nonthermal perennial habitats were heritably differentiated for life-history and mating system traits, consistent with local adaptation to the ephemeral thermal-soil growing season. However, genome-wide genetic variation primarily clustered plants by geographic region, with little variation sorting by habitat. The one exception was an extreme thermal population also isolated by a 200 m geographical gap of no intermediate habitat. Individual inbreeding coefficients (FIS ) were higher (and predicted by trait variation) in annual plants and annual pairs showed greater isolation by distance at local (<1 km) scales. Finally, YNP adaptation does not reuse a widespread inversion that underlies M. guttatus life-history ecotypes range-wide, suggesting a novel genetic mechanism. Overall, this work suggests that life-history and mating system adaptation strong enough to shape individual mating patterns does not necessarily generate incipient speciation without geographical barriers.
Collapse
Affiliation(s)
- Kory M Kolis
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: O'Connor Center for the Rocky Mountain West, University of Montana, Missoula, MT, 59812
| | - Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Thomas C Nelson
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812.,Current Address: Embark Veterinary, Inc., Boston, Massachusetts, 02210
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|
4
|
Wold J, Koepfli KP, Galla SJ, Eccles D, Hogg CJ, Le Lec MF, Guhlin J, Santure AW, Steeves TE. Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern. Mol Ecol 2021; 30:5949-5965. [PMID: 34424587 PMCID: PMC9290615 DOI: 10.1111/mec.16141] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
Structural variants (SVs) are large rearrangements (>50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, that is, variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) data sets, SVs remain understudied despite their potential influence on fitness traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We also leverage the existing literature-predominantly in human health, agriculture and ecoevolutionary biology-to identify approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we manage some of the world's most threatened species.
Collapse
Affiliation(s)
- Jana Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, Front Royal, Virginia, USA.,Centre for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Stephanie J Galla
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - David Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Marissa F Le Lec
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Joseph Guhlin
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand.,Genomics Aotearoa, Dunedin, Otago, New Zealand
| | - Anna W Santure
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|