1
|
Jeong J, McCallum H. Effects of Waning Maternal Immunity on Infection Dynamics in Seasonally Breeding Wildlife. ECOHEALTH 2021; 18:194-203. [PMID: 34432160 DOI: 10.1007/s10393-021-01541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Increasing outbreaks of emerging infectious diseases originating from wildlife have intensified interests in understanding their dynamics in reservoir hosts. The effect of waning maternally derived antibodies on epidemics in a seasonally breeding wild mammal population is unclear. We examined how the population structure, influenced by seasonal breeding and maternally derived immunity, affects viral invasion and persistence using a hypothetical system based on Hendra virus infection in black flying foxes (Pteropus alecto). A deterministic Hendra virus epidemic model with uncertainty in parameter values was used to simulate transient epidemics following viral introduction into an infection-free population, including various timings within a year and differences in pre-existing seroprevalence. Additionally, we applied different modelling methods of waning maternal immunity to examine whether different models notably affected modelling outputs. The waning of maternally derived immunity temporally dispersed the supply of susceptible individuals in seasonally breeding populations, diminishing the effect of birth pulses generating the temporally synchronised supply of susceptible newborns. Thus, even in a population with seasonal births, a considerable level of probabilities of viral invasion and persistence could occur no matter when infectious individuals were introduced into the population. Viral invasion and persistence were substantially influenced by the modelling method of maternally derived immunity, emphasising the need to select an appropriate method and further investigate the waning pattern of maternally derived antibodies.
Collapse
Affiliation(s)
- Jaewoon Jeong
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD, 4111, Australia.
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, C1A 4P3, Prince Edward Island, Canada.
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
2
|
Silva WTAF, Bottagisio E, Härkönen T, Galatius A, Olsen MT, Harding KC. Risk for overexploiting a seemingly stable seal population: influence of multiple stressors and hunting. Ecosphere 2021. [DOI: 10.1002/ecs2.3343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Willian T. A. F. Silva
- Department of Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - Elio Bottagisio
- Department of Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | | | - Anders Galatius
- Section for Marine Mammal Research Department of Bioscience Aarhus University Frederiksborgvej 399 Roskilde4000Denmark
| | - Morten Tange Olsen
- Section for Evolutionary Genomics Globe Institute University of Copenhagen Copenhagen Denmark
| | - Karin C. Harding
- Department of Biology and Environmental Sciences University of Gothenburg Gothenburg Sweden
| |
Collapse
|
3
|
Reijniers J, Tersago K, Borremans B, Hartemink N, Voutilainen L, Henttonen H, Leirs H. Why Hantavirus Prevalence Does Not Always Increase With Host Density: Modeling the Role of Host Spatial Behavior and Maternal Antibodies. Front Cell Infect Microbiol 2020; 10:536660. [PMID: 33134187 PMCID: PMC7550670 DOI: 10.3389/fcimb.2020.536660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
For wildlife diseases, one often relies on host density to predict host infection prevalence and the subsequent force of infection to humans in the case of zoonoses. Indeed, if transmission is mainly indirect, i.e., by way of the environment, the force of infection is expected to increase with host density, yet the laborious field data supporting this theoretical claim are often absent. Hantaviruses are among those zoonoses that have been studied extensively over the past decades, as they pose a significant threat to humans. In Europe, the most widespread hantavirus is the Puumala virus (PUUV), which is carried by the bank vole and causes nephropathia epidemica (NE) in humans. Extensive field campaigns have been carried out in Central Finland to shed light on this supposed relationship between bank vole density and PUUV prevalence and to identify other drivers for the infection dynamics. This resulted in the surprising observation that the relationship between bank vole density and PUUV prevalence is not purely monotonic on an annual basis, contrary to what previous models predicted: a higher vole density does not necessary result in a higher infection prevalence, nor in an increased number of humans reported having NE. Here, we advance a novel individual-based spatially-explicit model which takes into account the immunity provided by maternal antibodies and which simulates the spatial behavior of the host, both possible causes for this discrepancy that were not accounted for in previous models. We show that the reduced prevalence in peak years can be attributed to transient immunity, and that the density-dependent spatial vole behavior, i.e., the fact that home ranges are smaller in high density years, plays only a minor role. The applicability of the model is not limited to the study and prediction of PUUV (and NE) occurrence in Europe, as it could be easily adapted to model other rodent-borne diseases, either with indirect or direct transmission.
Collapse
Affiliation(s)
- Jonas Reijniers
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium.,Active Perception Lab, Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Katrien Tersago
- Agentschap Zorg en Gezondheid, Government Administration, Brussels, Belgium
| | - Benny Borremans
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | - Nienke Hartemink
- Theoretical Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.,Biometris, Wageningen University and Research, Wageningen, Netherlands
| | | | - Heikki Henttonen
- Terrestrial Population Dynamics, Natural Resources Institute Finland, Helsinki, Finland
| | - Herwig Leirs
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Foster G, Nymo IH, Kovacs KM, Beckmen KB, Brownlow AC, Baily JL, Dagleish MP, Muchowski J, Perrett LL, Tryland M, Lydersen C, Godfroid J, McGovern B, Whatmore AM. First isolation of Brucella pinnipedialis and detection of Brucella antibodies from bearded seals Erignathus barbatus. DISEASES OF AQUATIC ORGANISMS 2018; 128:13-20. [PMID: 29565250 DOI: 10.3354/dao03211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brucella species infecting marine mammals was first reported in 1994 and in the years since has been documented in various species of pinnipeds and cetaceans. While these reports have included species that inhabit Arctic waters, the few available studies on bearded seals Erignathus barbatus have failed to detect Brucella infection to date. We report the first isolation of Brucella pinnipedialis from a bearded seal. The isolate was recovered from the mesenteric lymph node of a bearded seal that stranded in Scotland and typed as ST24, a sequence type associated typically with pinnipeds. Furthermore, serological studies of free-ranging bearded seals in their native waters detected antibodies to Brucella in seals from the Chukchi Sea (1990-2011; 19%) and Svalbard (1995-2007; 8%), whereas no antibodies were detected in bearded seals from the Bering Sea or Bering Strait or from captive bearded seals.
Collapse
Affiliation(s)
- Geoffrey Foster
- SAC Consulting Veterinary Services, Drummondhill, Stratherrick Road, Inverness IV2 4JZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lowe AD, Bawazeer S, Watson DG, McGill S, Burchmore RJS, Pomeroy PPP, Kennedy MW. Rapid changes in Atlantic grey seal milk from birth to weaning - immune factors and indicators of metabolic strain. Sci Rep 2017; 7:16093. [PMID: 29170469 PMCID: PMC5700954 DOI: 10.1038/s41598-017-16187-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/08/2017] [Indexed: 11/21/2022] Open
Abstract
True seals have the shortest lactation periods of any group of placental mammal. Most are capital breeders that undergo short, intense lactations, during which they fast while transferring substantial proportions of their body reserves to their pups, which they then abruptly wean. Milk was collected from Atlantic grey seals (Halichoerus grypus) periodically from birth until near weaning. Milk protein profiles matured within 24 hours or less, indicating the most rapid transition from colostrum to mature phase lactation yet observed. There was an unexpected persistence of immunoglobulin G almost until weaning, potentially indicating prolonged trans-intestinal transfer of IgG. Among components of innate immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation by pathogens and encourage an appropriate milk-digestive and protective gut microbiome. These oligosaccharides decreased from early lactation to almost undetectable levels by weaning. Taurine levels were initially high, then fell, possibly indicative of taurine dependency in seals, and progressive depletion of maternal reserves. Metabolites that signal changes in the mother’s metabolism of fats, such as nicotinamide and derivatives, rose from virtual absence, and acetylcarnitines fell. It is therefore possible that indicators of maternal metabolic strain exist that signal the imminence of weaning.
Collapse
Affiliation(s)
- Amanda D Lowe
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Sami Bawazeer
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Suzanne McGill
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - Richard J S Burchmore
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - P P Paddy Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Malcolm W Kennedy
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
6
|
White LA, Forester JD, Craft ME. Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges. J Anim Ecol 2017; 87:559-580. [PMID: 28944450 DOI: 10.1111/1365-2656.12761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 09/07/2017] [Indexed: 01/26/2023]
Abstract
Individual differences in contact rate can arise from host, group and landscape heterogeneity and can result in different patterns of spatial spread for diseases in wildlife populations with concomitant implications for disease control in wildlife of conservation concern, livestock and humans. While dynamic disease models can provide a better understanding of the drivers of spatial spread, the effects of landscape heterogeneity have only been modelled in a few well-studied wildlife systems such as rabies and bovine tuberculosis. Such spatial models tend to be either purely theoretical with intrinsic limiting assumptions or individual-based models that are often highly species- and system-specific, limiting the breadth of their utility. Our goal was to review studies that have utilized dynamic, spatial models to answer questions about pathogen transmission in wildlife and identify key gaps in the literature. We begin by providing an overview of the main types of dynamic, spatial models (e.g., metapopulation, network, lattice, cellular automata, individual-based and continuous-space) and their relation to each other. We investigate different types of ecological questions that these models have been used to explore: pathogen invasion dynamics and range expansion, spatial heterogeneity and pathogen persistence, the implications of management and intervention strategies and the role of evolution in host-pathogen dynamics. We reviewed 168 studies that consider pathogen transmission in free-ranging wildlife and classify them by the model type employed, the focal host-pathogen system, and their overall research themes and motivation. We observed a significant focus on mammalian hosts, a few well-studied or purely theoretical pathogen systems, and a lack of studies occurring at the wildlife-public health or wildlife-livestock interfaces. Finally, we discuss challenges and future directions in the context of unprecedented human-mediated environmental change. Spatial models may provide new insights into understanding, for example, how global warming and habitat disturbance contribute to disease maintenance and emergence. Moving forward, better integration of dynamic, spatial disease models with approaches from movement ecology, landscape genetics/genomics and ecoimmunology may provide new avenues for investigation and aid in the control of zoonotic and emerging infectious diseases.
Collapse
Affiliation(s)
- Lauren A White
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, USA
| | - James D Forester
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
7
|
Metcalf CJE, Jones JH. The evolutionary dynamics of timing of maternal immunity: evaluating the role of age-specific mortality. J Evol Biol 2015; 28:493-502. [PMID: 25611057 DOI: 10.1111/jeb.12583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 11/29/2022]
Abstract
If a female survives an infection, she can transfer antibodies against that particular pathogen to any future offspring she produces. The resulting protection of offspring for a period after their birth is termed maternal immunity. Because infection in newborns is associated with high mortality, the duration of this protection is expected to be under strong selection. Evolutionary modelling structured around a trade-off between fertility and duration of maternal immunity has indicated selection for longer duration of maternal immunity for hosts with longer lifespans. Here, we use a new modelling framework to extend this analysis to consider characteristics of pathogens (and hosts) in further detail. Importantly, given the challenges in characterizing trade-offs linked to immune function empirically, our model makes no assumptions about costs of longer lasting maternal immunity. Rather, a key component of this analysis is variation in mortality over age. We found that the optimal duration of maternal immunity is shaped by the shifting balance of the burden of infection between young and old individuals. As age of infection depends on characteristics of both the host and the pathogen, both affect the evolution of duration of maternal immunity. Our analysis provides additional support for selection for longer duration of maternal immunity in long-lived hosts, even in the absence of explicit costs linked to duration of maternal immunity. Further, the scope of our results provides explanations for exceptions to the general correlation between duration of maternal immunity and lifespan, as we found that both pathogen characteristics and trans-generational effects can lead to important shifts in fitness linked to maternal immunity. Finally, our analysis points to new directions for quantifying the trade-offs that drive the development of the immune system.
Collapse
Affiliation(s)
- C J E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
8
|
Duignan PJ, Van Bressem MF, Baker JD, Barbieri M, Colegrove KM, De Guise S, de Swart RL, Di Guardo G, Dobson A, Duprex WP, Early G, Fauquier D, Goldstein T, Goodman SJ, Grenfell B, Groch KR, Gulland F, Hall A, Jensen BA, Lamy K, Matassa K, Mazzariol S, Morris SE, Nielsen O, Rotstein D, Rowles TK, Saliki JT, Siebert U, Waltzek T, Wellehan JF. Phocine distemper virus: current knowledge and future directions. Viruses 2014; 6:5093-134. [PMID: 25533658 PMCID: PMC4276944 DOI: 10.3390/v6125093] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years.
Collapse
Affiliation(s)
- Pádraig J. Duignan
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada; E-Mails: (P.D.); (K.L.)
| | - Marie-Françoise Van Bressem
- Cetacean Conservation Medicine Group (CMED), Peruvian Centre for Cetacean Research (CEPEC), Pucusana, Lima 20, Peru; E-Mail:
| | - Jason D. Baker
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, NOAA, 1845 WASP Blvd., Building 176, Honolulu, Hawaii 96818, USA; E-Mails: (J.D.B.); (M.B.)
| | - Michelle Barbieri
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, NOAA, 1845 WASP Blvd., Building 176, Honolulu, Hawaii 96818, USA; E-Mails: (J.D.B.); (M.B.)
- The Marine Mammal Centre, Sausalito, CA 94965, USA; E-Mail:
| | - Kathleen M. Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Maywood, IL 60153, USA; E-Mail:
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, and Connecticut Sea Grant College Program, University of Connecticut, Storrs, CT 06269, USA; E-Mail:
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, 3015 CN Rotterdam, The Netherlands; E-Mail:
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; E-Mail:
| | - Andrew Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA; E-Mails: (A.D.); (B.G.); (S.E.M.)
| | - W. Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston University, 620 Albany Street, Boston, MA 02118, USA; E-Mail:
| | - Greg Early
- Greg Early, Integrated Statistics, 87 Water St, Woods Hole, MA 02543, USA; E-Mail:
| | - Deborah Fauquier
- National Marine Fisheries Service/National Oceanographic and Atmospheric Administration, Marine Mammal Health and Stranding Response Program, Silver Spring, MD 20910, USA; E-Mails: (D.F.); (T.K.R.)
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; E-Mail:
| | - Simon J. Goodman
- School of Biology, University of Leeds, Leeds LS2 9JT, UK; E-Mail:
| | - Bryan Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA; E-Mails: (A.D.); (B.G.); (S.E.M.)
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA
| | - Kátia R. Groch
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; E-Mail:
| | - Frances Gulland
- The Marine Mammal Centre, Sausalito, CA 94965, USA; E-Mail:
- Marine Mammal Commission, 4340 East-West Highway, Bethesda, MD 20814, USA
| | - Ailsa Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, UK; E-Mail:
| | - Brenda A. Jensen
- Department of Natural Sciences, Hawai’i Pacific University, Kaneohe, HI 96744, USA; E-Mail:
| | - Karina Lamy
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada; E-Mails: (P.D.); (K.L.)
| | - Keith Matassa
- Keith Matassa, Pacific Marine Mammal Center, 20612 Laguna Canyon Road, Laguna Beach, CA 92651, USA; E-Mail:
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro Padua, Italy; E-Mail:
| | - Sinead E. Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA; E-Mails: (A.D.); (B.G.); (S.E.M.)
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Central and Arctic Region, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada; E-Mail:
| | - David Rotstein
- David Rotstein, Marine Mammal Pathology Services, 19117 Bloomfield Road, Olney, MD 20832, USA; E-Mail:
| | - Teresa K. Rowles
- National Marine Fisheries Service/National Oceanographic and Atmospheric Administration, Marine Mammal Health and Stranding Response Program, Silver Spring, MD 20910, USA; E-Mails: (D.F.); (T.K.R.)
| | - Jeremy T. Saliki
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, GA 30602, USA; E-Mail:
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover 30173, Germany; E-Mail:
| | - Thomas Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, FL 32611, USA; E-Mail:
| | - James F.X. Wellehan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, FL 32610, USA; E-Mail:
| |
Collapse
|