1
|
Jiao J, Suarez GP, Fefferman NH. How public reaction to disease information across scales and the impacts of vector control methods influence disease prevalence and control efficacy. PLoS Comput Biol 2021; 17:e1008762. [PMID: 34181645 PMCID: PMC8270472 DOI: 10.1371/journal.pcbi.1008762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/09/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
With the development of social media, the information about vector-borne disease incidence over broad spatial scales can cause demand for local vector control before local risk exists. Anticipatory intervention may still benefit local disease control efforts; however, infection risks are not the only focal concerns governing public demand for vector control. Concern for environmental contamination from pesticides and economic limitations on the frequency and magnitude of control measures also play key roles. Further, public concern may be focused more on ecological factors (i.e., controlling mosquito populations) or on epidemiological factors (i.e., controlling infection-carrying mosquitoes), which may lead to very different control outcomes. Here we introduced a generic Ross-MacDonald model, incorporating these factors under three spatial scales of disease information: local, regional, and global. We tailored and parameterized the model for Zika virus transmitted by Aedes aegypti mosquito. We found that sensitive reactivity caused by larger-scale incidence information could decrease average human infections per patch breeding capacity, however, the associated increase in total control effort plays a larger role, which leads to an overall decrease in control efficacy. The shift of focal concerns from epidemiological to ecological risk could relax the negative effect of the sensitive reactivity on control efficacy when mosquito breeding capacity populations are expected to be large. This work demonstrates that, depending on expected total mosquito breeding capacity population size, and weights of different focal concerns, large-scale disease information can reduce disease infections without lowering control efficacy. Our findings provide guidance for vector-control strategies by considering public reaction through social media.
Collapse
Affiliation(s)
- Jing Jiao
- National Institute for Mathematical and Biological Synthesis, The University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Gonzalo P. Suarez
- Department of Agriculture and Biological Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Nina H. Fefferman
- National Institute for Mathematical and Biological Synthesis, The University of Tennessee, Knoxville, Tennessee, United States of America
- Ecology & Evolutionary Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
2
|
Jiao J, Fefferman N. The dynamics of evolutionary rescue from a novel pathogen threat in a host metapopulation. Sci Rep 2021; 11:10932. [PMID: 34035424 PMCID: PMC8149858 DOI: 10.1038/s41598-021-90407-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/11/2021] [Indexed: 02/04/2023] Open
Abstract
When a novel disease strikes a naïve host population, there is evidence that the most immediate response can involve host evolution while the pathogen remains relatively unchanged. When hosts also live in metapopulations, there may be critical differences in the dynamics that emerge from the synergy among evolutionary, ecological, and epidemiological factors. Here we used a Susceptible-Infected-Recovery model to explore how spatial and temporal ecological factors may drive the epidemiological and rapid-evolutionary dynamics of host metapopulations. For simplicity, we assumed two host genotypes: wild type, which has a positive intrinsic growth rate in the absence of disease, and robust type, which is less likely to catch the infection given exposure but has a lower intrinsic growth rate in the absence of infection. We found that the robust-type host would be strongly selected for in the presence of disease when transmission differences between the two types is large. The growth rate of the wild type had dual but opposite effects on host composition: a smaller increase in wild-type growth increased wild-type competition and lead to periodical disease outbreaks over the first generations after pathogen introduction, while larger growth increased disease by providing more susceptibles, which increased robust host density but decreased periodical outbreaks. Increased migration had a similar impact as the increased differential susceptibility, both of which led to an increase in robust hosts and a decrease in periodical outbreaks. Our study provided a comprehensive understanding of the combined effects among migration, disease epidemiology, and host demography on host evolution with an unchanging pathogen. The findings have important implications for wildlife conservation and zoonotic disease control.
Collapse
Affiliation(s)
- Jing Jiao
- National Institute for Mathematical and Biological Synthesis, The University of Tennessee, 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996, USA.
- Department of Biological Science, Florida State University, 319 Stadium Dr, Tallahassee, FL, 32304, USA.
| | - Nina Fefferman
- National Institute for Mathematical and Biological Synthesis, The University of Tennessee, 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996, USA
- Ecology & Evolutionary Biology, The University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
3
|
Malakhoff KD, Miller RJ. After 15 years, no evidence for trophic cascades in marine protected areas. Proc Biol Sci 2021; 288:20203061. [PMID: 33593185 DOI: 10.1098/rspb.2020.3061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In marine ecosystems, fishing often targets predators, which can drive direct and indirect effects on entire food webs. Marine reserves can induce trophic cascades by increasing predator density and body size, thereby increasing predation pressure on populations of herbivores, such as sea urchins. In California's northern Channel Islands, two species of sea urchins are abundant: the red urchin Mesocentrotus franciscanus, which is targeted by an economically valuable fishery, and the virtually unfished purple urchin Strongylocentrotus purpuratus. We hypothesized that urchin populations inside marine reserves would be depressed by higher predation, but that red urchins would be less affected due to fishing outside reserves. Instead, our analyses revealed that purple urchin populations were unaffected by reserves, and red urchin biomass significantly increased in response to protection. Therefore, urchin biomass overall has increased inside reserves, and we found no evidence that giant kelp is positively affected by reserves. Our results reveal the overwhelming direct effect of protecting fished species in marine reserves over indirect effects that are often predicted but seldom clearly documented. Indirect effects due to marine reserves may eventually occur in some cases, but very effective predators, large reserves or extended time periods may be needed to induce them.
Collapse
Affiliation(s)
- Katrina D Malakhoff
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9010, USA
| | - Robert J Miller
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9010, USA
| |
Collapse
|
4
|
Jiao J, Gilchrist MA, Fefferman NH. The impact of host metapopulation structure on short-term evolutionary rescue in the face of a novel pathogenic threat. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Jiao J, Riotte-Lambert L, Pilyugin SS, Gil MA, Osenberg CW. Mobility and its sensitivity to fitness differences determine consumer-resource distributions. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200247. [PMID: 32742692 PMCID: PMC7353973 DOI: 10.1098/rsos.200247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
An animal's movement rate (mobility) and its ability to perceive fitness gradients (fitness sensitivity) determine how well it can exploit resources. Previous models have examined mobility and fitness sensitivity separately and found that mobility, modelled as random movement, prevents animals from staying in high-quality patches, leading to a departure from an ideal free distribution (IFD). However, empirical work shows that animals with higher mobility can more effectively collect environmental information and better sense patch quality, especially when the environment is frequently changed by human activities. Here, we model, for the first time, this positive correlation between mobility and fitness sensitivity and measure its consequences for the populations of a consumer and its resource. In the absence of consumer demography, mobility alone had no effect on system equilibria, but a positive correlation between mobility and fitness sensitivity could produce an IFD. In the presence of consumer demography, lower levels of mobility prevented the system from approaching an IFD due to the mixing of consumers between patches. However, when positively correlated with fitness sensitivity, high mobility led to an IFD. Our study demonstrates that the expected covariation of animal movement attributes can drive broadly theorized consumer-resource patterns across space and time and could underlie the role of consumers in driving spatial heterogeneity in resource abundance.
Collapse
Affiliation(s)
- Jing Jiao
- NIMBioS, University of Tennessee, Knoxville, TN, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Louise Riotte-Lambert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - Michael A. Gil
- Institute of Marine Sciences, University of California, NOAA Southwest Fisheries Science Center, Santa Cruz, CA, USA
| | | |
Collapse
|
6
|
LYU JINGJING, AUKER LINDAA, PRIYADARSHI ANUPAM, PARSHAD RANAD. THE EFFECTS OF INVASIVE EPIBIONTS ON CRAB–MUSSEL COMMUNITIES: A THEORETICAL APPROACH TO UNDERSTAND MUSSEL POPULATION DECLINE. J BIOL SYST 2020. [DOI: 10.1142/s0218339020500060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Blue mussels (Mytilus edulis) are important keystone species that have been declining in the Gulf of Maine. This could be attributed to a variety of complex factors such as indirect effects due to invasion by epibionts, which remains unexplored mathematically. Based on classical optimal foraging theory (OFT) and anti-fouling defense mechanisms of mussels, we derive an ODE model for crab–mussel interactions in the presence of an invasive epibiont, Didemnum vexillum. The dynamical analysis leads to results on stability, global boundedness and bifurcations of the model. Next, via optimal control methods, we predict various ecological outcomes. Our results have key implications for preserving mussel populations in the advent of invasion by non-native epibionts. In particular, they help us understand the changing popluation dynamics of local predator–prey communities, due to indirect effects that epibionts confer.
Collapse
Affiliation(s)
- JINGJING LYU
- College of Information Science and Engineering, Chengdu University, Chengdu, Sichuan Province, P. R. China
| | - LINDA A. AUKER
- Department of Biology, Misericordia University, Dallas, PA 18612, USA
| | - ANUPAM PRIYADARSHI
- Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - RANA D. PARSHAD
- Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
7
|
Jiao J, Pilyugin SS, Riotte-Lambert L, Osenberg CW. Habitat-dependent movement rate can determine the efficacy of marine protected areas. Ecology 2018; 99:2485-2495. [PMID: 30054918 DOI: 10.1002/ecy.2477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 11/08/2022]
Abstract
Theoretical studies of marine protected areas (MPAs) suggest that more mobile species should exhibit reduced local effects (defined as the ratio of the density inside vs. outside of the MPA). However, empirical studies have not supported the expected negative relationship between the local effect and mobility. We propose that differential, habitat-dependent movement (i.e., a higher movement rate in the fishing grounds than in the MPA) might explain the disparity between theoretical expectations and empirical results. We evaluate this hypothesis by building two-patch box and stepping-stone models and show that increasing disparity in the habitat-specific movement rates shifts the relationship between the local effect and mobility from negative (the previous theoretical results) to neutral or positive (the empirical pattern). This shift from negative to positive occurs when differential movement offsets recruitment and mortality differences between the two habitats. Thus, local effects of MPAs might be caused by behavioral responses via differential movement rather than by, or in addition to, reductions in mortality. In addition, the benefits of MPAs, in terms of regional abundance and fishing yields, can be altered by the magnitude of differential movement. Thus, our study points to a need for empirical investigations that disentangle the interactions among mobility, differential movement, and protection.
Collapse
Affiliation(s)
- Jing Jiao
- Department of Biology, University of Florida, Gainesville, Florida, 32611-8525, USA.,Department of Fisheries and Wildlife, Quantitative Fisheries Center, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Sergei S Pilyugin
- Department of Mathematics, University of Florida, Gainesville, Florida, 32611-8105, USA
| | - Louise Riotte-Lambert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Craig W Osenberg
- Odum School of Ecology, University of Georgia, Athens, Georgia, 30602-2202, USA
| |
Collapse
|