1
|
Lopez A, Anthony M, Catalan-Dibene J, Ferrenberg S, Jordan SE, Osborne B, Reed S, Romero-Olivares AL. Dryland fungi are spatially heterogeneous and resistant to global change drivers. Ecosphere 2024; 15:e70031. [PMID: 40247861 PMCID: PMC12002595 DOI: 10.1002/ecs2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 04/19/2025] Open
Abstract
Fungi are considered particularly important in regulating the structure and function of dryland ecosystems, yet the response of dryland fungal communities to global change remains notably understudied. Without a clear understanding of how fungi respond to global change drivers, mitigation plans-required for biodiversity and ecosystem service conservation and restoration-are impossible to develop. In this study we asked the following: (1) how does the fungal community respond to the individual and interactive effects of physical disturbance and drought in a heterogeneous dryland landscape comprised of drought-adapted shrubs separated by adjacent open areas of soil, and (2) what are the larger scale impacts of this response? We assessed fungal communities (using fungal-specific DNA metabarcoding analyses) of surface soil samples in an in situ global change experiment that included disturbance and drought in a full factorial design in the northern extent of the Chihuahuan Desert. We found that the fungal community was spatially heterogenous and remarkably resistant to disturbance and drought. We also show that dryland soils harbor high shares of facultative pathogenic and obligately pathogenic fungal taxa, with several concerning taxa reaching high relative abundances under drought. Our results suggest that the fungal community is highly influenced by microclimatic conditions associated with the presence or absence of vegetation. Moreover, our results imply that the fungal community in our experiment was already adapted to the magnitude of stress imposed by two years of experimental disturbance and drought treatments. Overall, our study shows that the fungal community is spatially heterogeneous, resistant to global change drivers, and houses many fungal species known for being stress tolerant and pathogenic.
Collapse
Affiliation(s)
- Andrea Lopez
- New Mexico State University, Department of Biology, Las Cruces, New Mexico, USA
| | - Mark Anthony
- University of Vienna, Division of Terrestrial Ecosystem Research, Snow, and the Landscape, Vienna, Austria
| | | | - Scott Ferrenberg
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA
| | - Samuel E. Jordan
- Arizona State University, School of Life Sciences, Tempe, Arizona, USA
| | - Brooke Osborne
- Department of Environment and Society, Utah State University, Moab, Utah, USA
| | - Sasha Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | | |
Collapse
|
2
|
Rewcastle KE, Henning JA, Read QD, Irwin RE, Sanders NJ, Classen AT. Plant removal across an elevational gradient marginally reduces rates, substantially reduces variation in mineralization. Ecology 2021; 103:e03546. [PMID: 34618916 DOI: 10.1002/ecy.3546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022]
Abstract
The loss of aboveground plant diversity alters belowground ecosystem function; yet, the mechanisms underpinning this relationship and the degree to which plant community structure and climate mediate the effects of plant species loss remain unclear. Here, we explored how plant species loss through experimental removal shaped belowground function in ecosystems characterized by different climatic regimes and edaphic properties. We measured plant community composition as well as potential carbon (C) and nitrogen (N) mineralization and microbial extracellular enzyme activity in soils collected from four unique plant removal experiments located along an elevational gradient in Colorado, USA. We found that, regardless of the identity of the removed species or the climate at each site, plant removal decreased the absolute variation in potential N mineralization rates and marginally reduced the magnitude of N mineralization rates. While plant species removal also marginally reduced C mineralization rates, C mineralization, unlike N mineralization, displayed sensitivity to the climatic and edaphic differences among sites, where C mineralization was greatest at the high elevation site that receives the most precipitation annually and contains the largest soil total C pool. Plant removal had little impact on soil enzyme activity. Removal effects were not contingent on the amount of biomass removed annually, and shifts in mineralization rates occurred despite only marginal shifts in plant community structure following plant species removal. Our results present a surprisingly simple and consistent pattern of belowground response to the loss of dominant plant species across an elevational gradient with different climatic and edaphic properties, suggesting a common response of belowground ecosystem function to plant species loss regardless of which plant species are lost or the broader climatic context.
Collapse
Affiliation(s)
- Kenna E Rewcastle
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr., Burlington, Vermont, 05405, USA.,Gund Institute for Environment, University of Vermont, 210 Colchester Ave., Burlington, Vermont, 05405, USA.,Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA
| | - Jeremiah A Henning
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Biology, University of South Alabama, 5871 USA Dr. N, Mobile, Alabama, 36688, USA
| | - Quentin D Read
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,National Socio-Environmental Synthesis Center (SESYNC), 1 Park Pl., Annapolis, Maryland, 21401, USA
| | - Rebecca E Irwin
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Applied Ecology, North Carolina State University, Campus Box 7617, Raleigh, North Carolina, 27695, USA
| | - Nathan J Sanders
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave., Ann Arbor, Michigan, 48109, USA
| | - Aimée T Classen
- Rocky Mountain Biological Laboratory, P.O. Box 519, Crested Butte, Colorado, 81224, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave., Ann Arbor, Michigan, 48109, USA
| |
Collapse
|