1
|
Glassic HC, Guy CS, Tronstad LM, Lujan DR, Briggs MA, Albertson LK, Koel TM. Invasive predator diet plasticity has implications for native fish conservation and invasive species suppression. PLoS One 2023; 18:e0279099. [PMID: 36827303 PMCID: PMC9956068 DOI: 10.1371/journal.pone.0279099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/29/2022] [Indexed: 02/25/2023] Open
Abstract
Diet plasticity is a common behavior exhibited by piscivores to sustain predator biomass when preferred prey biomass is reduced. Invasive piscivore diet plasticity could complicate suppression success; thus, understanding invasive predator consumption is insightful to meeting conservation targets. Here, we determine if diet plasticity exists in an invasive apex piscivore and whether plasticity could influence native species recovery benchmarks and invasive species suppression goals. We compared diet and stable isotope signatures of invasive lake trout and native Yellowstone cutthroat trout (cutthroat trout) from Yellowstone Lake, Wyoming, U.S.A. as a function of no, low-, moderate-, and high-lake trout density states. Lake trout exhibited plasticity in relation to their density; consumption of cutthroat trout decreased 5-fold (diet proportion from 0.89 to 0.18) from low- to high-density state. During the high-density state, lake trout switched to amphipods, which were also consumed by cutthroat trout, resulting in high diet overlap (Schoener's index value, D = 0.68) between the species. As suppression reduced lake trout densities (moderate-density state), more cutthroat trout were consumed (proportion of cutthroat trout = 0.42), and diet overlap was released between the species (D = 0.30). A shift in lake trout δ13C signatures from the high- to the moderate-density state also corroborated increased consumption of cutthroat trout and lake trout diet plasticity. Observed declines in lake trout are not commensurate with expected cutthroat trout recovery due to lake trout diet plasticity. The abundance of the native species in need of conservation may take longer to recover due to the diet plasticity of the invasive species. The changes observed in diet, diet overlap, and isotopes associated with predator suppression provides more insight into conservation and suppression dynamics than using predator and prey biomass alone. By understanding these dynamics, we can better prepare conservation programs for potential feedbacks caused by invasive species suppression.
Collapse
Affiliation(s)
- Hayley C. Glassic
- Montana Cooperative Fishery Research Unit, Department of Ecology, Montana State University, Bozeman, Montana, United States of America,* E-mail:
| | - Christopher S. Guy
- Department of Ecology, U.S. Geological Survey, Montana Cooperative Fishery Research Unit, Montana State University, Bozeman, Montana, United States of America
| | - Lusha M. Tronstad
- Wyoming Natural Diversity Database, University of Wyoming, Laramie, Wyoming, United States of America
| | - Dominique R. Lujan
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, United States of America
| | - Michelle A. Briggs
- Montana Cooperative Fishery Research Unit, Department of Ecology, Montana State University, Bozeman, Montana, United States of America,Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - Lindsey K. Albertson
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - Todd M. Koel
- U.S. National Park Service, Yellowstone Center for Resources, Native Fish Conservation Program, Yellowstone National Park, Wyoming, United States of America
| |
Collapse
|
2
|
Budy PE, Walsworth T, Thiede GP, Thompson PD, McKell MD, Holden PB, Chase PD, Saunders WC. Resilient and rapid recovery of native trout after removal of a non‐native trout. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Phaedra E. Budy
- U.S. Geological Survey – Utah Cooperative Fish and Wildlife Research Unit Utah State University Logan Utah USA
- Department of Watershed Sciences and the Ecology Center Utah State University Logan Utah USA
| | - Timothy Walsworth
- Department of Watershed Sciences and the Ecology Center Utah State University Logan Utah USA
| | - Gary P. Thiede
- Department of Watershed Sciences and the Ecology Center Utah State University Logan Utah USA
| | | | | | | | - Paul D. Chase
- Logan Ranger District, Forest Service U. S. Department of Agriculture Logan Utah USA
| | - W. Carl Saunders
- Department of Watershed Sciences and the Ecology Center Utah State University Logan Utah USA
- PacFish InFish Biological Opinion Effectiveness Monitoring Program, Forest Service U.S. Department of Agriculture Logan Utah USA
| |
Collapse
|