1
|
Hoermann B, Dürr EM, Ludwig C, Ercan M, Köhn M. A strategy to disentangle direct and indirect effects on (de)phosphorylation by chemical modulators of the phosphatase PP1 in complex cellular contexts. Chem Sci 2024; 15:2792-2804. [PMID: 38404380 PMCID: PMC10882499 DOI: 10.1039/d3sc04746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Chemical activators and inhibitors are useful probes to identify substrates and downstream effects of enzymes; however, due to the complex signaling environment within cells, it is challenging to distinguish between direct and indirect effects. This is particularly the case for phosphorylation, where a single (de)phosphorylation event can trigger rapid changes in many other phosphorylation sites. An additional complication arises when a single catalytic entity, which acts in the form of many different holoenzymes with different substrates, is activated or inhibited, as it is unclear which holoenzymes are affected, and in turn which of their substrates are (de)phosphorylated. Direct target engaging MS-based technologies to study targets of drugs do not address these challenges. Here, we tackle this by studying the modulation of protein phosphatase-1 (PP1) activity by PP1-disrupting peptides (PDPs), as well as their selectivity toward PP1, by using a combination of mass spectrometry-based experiments. By combining cellular treatment with the PDP with in vitro dephosphorylation by the enzyme, we identify high confidence substrate candidates and begin to separate direct and indirect effects. Together with experiments analyzing which holoenzymes are particularly susceptible to this treatment, we obtain insights into the effect of the modulator on the complex network of protein (de)phosphorylation. This strategy holds promise for enhancing our understanding of PP1 in particular and, due to the broad applicability of the workflow and the MS-based read-out, of chemical modulators with complex mode of action in general.
Collapse
Affiliation(s)
- Bernhard Hoermann
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Eva-Maria Dürr
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Christina Ludwig
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM) Freising Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM) Freising Germany
| | - Melda Ercan
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg Freiburg Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg Freiburg Germany
| |
Collapse
|
2
|
Main A, Boguslavskyi A, Howie J, Kuo CW, Rankin A, Burton FL, Smith GL, Hajjar R, Baillie GS, Campbell KS, Shattock MJ, Fuller W. Dynamic but discordant alterations in zDHHC5 expression and palmitoylation of its substrates in cardiac pathologies. Front Physiol 2022; 13:1023237. [PMID: 36277202 PMCID: PMC9581287 DOI: 10.3389/fphys.2022.1023237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
S-palmitoylation is an essential lipid modification catalysed by zDHHC-palmitoyl acyltransferases that regulates the localisation and activity of substrates in every class of protein and tissue investigated to date. In the heart, S-palmitoylation regulates sodium-calcium exchanger (NCX1) inactivation, phospholemman (PLM) inhibition of the Na+/K+ ATPase, Nav1.5 influence on membrane excitability and membrane localisation of heterotrimeric G-proteins. The cell surface localised enzyme zDHHC5 palmitoylates NCX1 and PLM and is implicated in injury during anoxia/reperfusion. Little is known about how palmitoylation remodels in cardiac diseases. We investigated expression of zDHHC5 in animal models of left ventricular hypertrophy (LVH) and heart failure (HF), along with HF tissue from humans. zDHHC5 expression increased rapidly during onset of LVH, whilst HF was associated with decreased zDHHC5 expression. Paradoxically, palmitoylation of the zDHHC5 substrate NCX1 was significantly reduced in LVH but increased in human HF, while palmitoylation of the zDHHC5 substrate PLM was unchanged in all settings. Overexpression of zDHHC5 in rabbit ventricular cardiomyocytes did not alter palmitoylation of its substrates or overall cardiomyocyte contractility, suggesting changes in zDHHC5 expression in disease may not be a primary driver of pathology. zDHHC5 itself is regulated by post-translational modifications, including palmitoylation in its C-terminal tail. We found that in HF palmitoylation of zDHHC5 changed in the same manner as palmitoylation of NCX1, suggesting additional regulatory mechanisms may be involved. This study provides novel evidence that palmitoylation of cardiac substrates is altered in the setting of HF, and that expression of zDHHC5 is dysregulated in both hypertrophy and HF.
Collapse
Affiliation(s)
- Alice Main
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andri Boguslavskyi
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - Jacqueline Howie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chien-Wen Kuo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Aileen Rankin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Roger Hajjar
- Flagship Pioneering, Cambridge, MA, United States
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, United States
| | - Michael J Shattock
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Köhn M. Turn and Face the Strange: A New View on Phosphatases. ACS CENTRAL SCIENCE 2020; 6:467-477. [PMID: 32341996 PMCID: PMC7181316 DOI: 10.1021/acscentsci.9b00909] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/08/2023]
Abstract
Phosphorylation as a post-translational modification is critical for cellular homeostasis. Kinases and phosphatases regulate phosphorylation levels by adding or removing, respectively, a phosphate group from proteins or other biomolecules. Imbalances in phosphorylation levels are involved in a multitude of diseases. Phosphatases are often thought of as the black sheep, the strangers, of phosphorylation-mediated signal transduction, particularly when it comes to drug discovery and development. This is due to past difficulties to study them and unsuccessful attempts to target them; however, phosphatases have regained strong attention and are actively pursued now in clinical trials. By giving examples for current hot topics in phosphatase biology and for new approaches to target them, it is illustrated here how and why phosphatases made their comeback, and what is envisioned to come in the future.
Collapse
Affiliation(s)
- Maja Köhn
- Faculty
of Biology, Institute of Biology III, University
of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Zhu Y, Gao Y, Sun X, Wang C, Rui X, Si D, Zhu J, Li W, Liu J. Discovery of novel serine/threonine protein phosphatase 1 inhibitors from traditional Chinese medicine through virtual screening and biological assays. J Biomol Struct Dyn 2019; 38:5464-5473. [PMID: 31820681 DOI: 10.1080/07391102.2019.1702588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) is a critical regulator of several processes, such as muscle contraction, neuronal signaling, glycogen synthesis, and cell proliferation. Dysregulation of PP1 has recently been found to be implicated in cardiac dysfunctions, which indicates that PP1 could be an attractive therapeutic target. However, discovery of PP1 inhibitors with satisfied safety and efficiency is still a challenge. Here, in order to discover potential PP1 inhibitors, compounds extracted from traditional Chinese medicine (TCM) were screened by a novel integrated virtual screening protocol including pharmacophore modeling and docking approaches. Combined with protein phosphatase inhibition assay, ZINC43060554 showed strongly inhibitory activity with IC50 values of 26.78 μM. Furthermore, molecular dynamics simulation and Molecular Mechanics/Generalized Born Surface Area binding free-energy analysis were performed to examine the stability of ligand binding modes. These novel scaffolds discovered in the present study can be used for rational design of PP1 inhibitors with high affinity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yehua Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Research Institute, Nanjing Tongrentang Pharmaceutical Co. Ltd, Nanjing, China
| | - Yi Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinjie Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyan Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongjuan Si
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junru Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Wang Y, Hoermann B, Pavic K, Trebacz M, Rios P, Köhn M. Interrogating PP1 Activity in the MAPK Pathway with Optimized PP1-Disrupting Peptides. Chembiochem 2018; 20:66-71. [PMID: 30338897 PMCID: PMC6471087 DOI: 10.1002/cbic.201800541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Protein phosphatase‐1 (PP1)‐disrupting peptides (PDPs) are selective chemical modulators of PP1 that liberate the active PP1 catalytic subunit from regulatory proteins; thus allowing the dephosphorylation of nearby substrates. We have optimized the original cell‐active PDP3 for enhanced stability, and obtained insights into the chemical requirements for stabilizing this 23‐mer peptide for cellular applications. The optimized PDP‐Nal was used to dissect the involvement of PP1 in the MAPK signaling cascade. Specifically, we have demonstrated that, in human osteosarcoma (U2OS) cells, phosphoMEK1/2 is a direct substrate of PP1, whereas dephosphorylation of phosphoERK1/2 is indirect and likely mediated through enhanced tyrosine phosphatase activity after PDP‐mediated PP1 activation. Thus, as liberators of PP1 activity, PDPs represent a valuable tool for identifying the substrates of PP1 and understanding its role in diverse signaling cascades.
Collapse
Affiliation(s)
- Yansong Wang
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Bernhard Hoermann
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Faculty of Biology and BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.,Collaboration for joint PhD degree between EMBL and, Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Karolina Pavic
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Malgorzata Trebacz
- Faculty of Biology and BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Pablo Rios
- Faculty of Biology and BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Faculty of Biology and BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| |
Collapse
|