1
|
Dandel M. Cardiological Challenges Related to Long-Term Mechanical Circulatory Support for Advanced Heart Failure in Patients with Chronic Non-Ischemic Cardiomyopathy. J Clin Med 2023; 12:6451. [PMID: 37892589 PMCID: PMC10607800 DOI: 10.3390/jcm12206451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Long-term mechanical circulatory support by a left ventricular assist device (LVAD), with or without an additional temporary or long-term right ventricular (RV) support, is a life-saving therapy for advanced heart failure (HF) refractory to pharmacological treatment, as well as for both device and surgical optimization therapies. In patients with chronic non-ischemic cardiomyopathy (NICM), timely prediction of HF's transition into its end stage, necessitating life-saving heart transplantation or long-term VAD support (as a bridge-to-transplantation or destination therapy), remains particularly challenging, given the wide range of possible etiologies, pathophysiological features, and clinical presentations of NICM. Decision-making between the necessity of an LVAD or a biventricular assist device (BVAD) is crucial because both unnecessary use of a BVAD and irreversible right ventricular (RV) failure after LVAD implantation can seriously impair patient outcomes. The pre-operative or, at the latest, intraoperative prediction of RV function after LVAD implantation is reliably possible, but necessitates integrative evaluations of many different echocardiographic, hemodynamic, clinical, and laboratory parameters. VADs create favorable conditions for the reversal of structural and functional cardiac alterations not only in acute forms of HF, but also in chronic HF. Although full cardiac recovery is rather unusual in VAD recipients with pre-implant chronic HF, the search for myocardial reverse remodelling and functional improvement is worthwhile because, for sufficiently recovered patients, weaning from VADs has proved to be feasible and capable of providing survival benefits and better quality of life even if recovery remains incomplete. This review article aimed to provide an updated theoretical and practical background for those engaged in this highly demanding and still current topic due to the continuous technical progress in the optimization of long-term VADs, as well as due to the new challenges which have emerged in conjunction with the proof of a possible myocardial recovery during long-term ventricular support up to levels which allow successful device explantation.
Collapse
Affiliation(s)
- Michael Dandel
- German Centre for Heart and Circulatory Research (DZHK), 10785 Berlin, Germany
| |
Collapse
|
2
|
Knierim J, Tsyganenko D, Stein J, Mulzer J, Müller M, Hrytsyna Y, Schoenrath F, Falk V, Potapov E. Results of non-elective withdrawal of continuous-flow left ventricular assist devices in selected patients. J Heart Lung Transplant 2022; 42:610-616. [PMID: 36529649 DOI: 10.1016/j.healun.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/24/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Protocols have been developed to identify patients for elective withdrawal of continuous-flow left ventricular device (cfLVAD) support. However, little is known about non-elective explantation or decommissioning of cfLVADs. METHODS A retrospective analysis of all patients who underwent left ventricular assist device (LVAD) explantation or decommissioning at a single center between 2002 and 2021 was performed. RESULTS Sixty-one patients underwent withdrawal of a cfLVAD (HeartMate II [Abbott] n = 17, HeartMate 3 [Abbott] n = 2, HeartWare HVAD [Medtronic] n = 36, INCOR [Berlin Heart] n = 6). The median follow-up after withdrawal was 1,039 days. The survival at 5 years was 76.1% (95% CI: 64.2%-95.2%). Predictors of worse outcomes in univariate regressive analysis were the duration of heart failure and the age at LVAD implantation. Of the 61 patients, 40 underwent elective withdrawal following a specific protocol. The other twenty-one patients underwent non-elective withdrawal of the cfLVAD because of device infection (n = 12), device thrombosis (n = 6), device malfunction (n = 2) or due to acute intracerebral bleeding (n = 1), also with an excellent survival at 5 years of 81.3%. (95% CI: 63.8-1). The withdrawal was performed in these patients even though they did not fulfill established criteria for successful explantation or decommissioning like clinical stability (n = 21), left ventricular end-diastolic diameter ≤ 55 mm (n = 3), performance of right heart catheterization (n = 6), or pulmonary artery wedge pressure ≤ 15 mm Hg (n = 3). CONCLUSION Non-elective withdrawal is possible in selected patients after discussion in a team of experienced cardiac surgeons, cardiologists, technicians, and VAD coordinators. The appropriate preoperative assessment before decommissioning or explantation of a cfLVAD warrants further investigation.
Collapse
|
3
|
Ponzoni M, Castaldi B, Padalino MA. Pulmonary Artery Banding for Dilated Cardiomyopathy in Children: Returning to the Bench from Bedside. CHILDREN 2022; 9:children9091392. [PMID: 36138701 PMCID: PMC9497481 DOI: 10.3390/children9091392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Current treatment paradigms for end-stage dilated cardiomyopathy (DCM) in children include heart transplantation and mechanical support devices. However, waitlist mortality, shortage of smaller donors, time-limited durability of grafts, and thrombo-hemorrhagic events affect long-term outcomes. Moreover, both these options are noncurative and cannot preserve the native heart function. Pulmonary artery banding (PAB) has been reinvented as a possible “regenerative surgery” to retrain the decompensated left ventricle in children with DCM. The rationale is to promote positive ventricular–ventricular interactions that result in recovery of left ventricular function in one out of two children, allowing transplantation delisting. Although promising, global experience with this technique is still limited, and several surgical centers are reluctant to adopt PAB since its exact biological bases remain unknown. In the present review, we summarize the clinical, functional, and molecular known and supposed working mechanisms of PAB in children with DCM. From its proven efficacy in the clinical setting, we described the macroscopic geometrical and functional changes in biventricular performance promoted by PAB. We finally speculated on the possible underlying molecular pathways recruited by PAB. An evidence-based explanation of the working mechanisms of PAB is still awaited to support wider adoption of this surgical option for pediatric heart failure.
Collapse
Affiliation(s)
- Matteo Ponzoni
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Biagio Castaldi
- Pediatric Cardiology Unit, Department of Woman's and Child's Health, University of Padua, 35122 Padua, Italy
| | - Massimo A Padalino
- Pediatric and Congenital Cardiac Surgery Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| |
Collapse
|
4
|
Zhang RS, Hanff TC, Peters CJ, Evans PT, Marble J, Rame JE, Atluri P, Urgo K, Tanna MS, Mazurek JA, Acker MA, Cevasco M, Birati EY, Wald JW. Left Ventricular Assist Device as a Bridge to Recovery: Single Center Experience of Successful Device Explantation. ASAIO J 2022; 68:822-828. [PMID: 34560718 DOI: 10.1097/mat.0000000000001574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Continuous-flow left ventricular assist devices (CF-LVAD) have been shown to enhance reverse remodeling and myocardial recovery in certain patients allowing for device removal. We sought to analyze the characteristics and describe outcomes of patients who underwent CF-LVAD explantation at a large academic center. We retrospectively identified all patients who underwent CF-LVAD explants due to recovery from 2006 to 2019. Patient baseline characteristics and data on pre- and postexplant evaluation were collected and analyzed. Of 421 patients who underwent CF-LVAD implantation, 13 underwent explantation (3.1%). Twelve HeartMate II and one HeartWare LVAD were explanted. All patients had nonischemic cardiomyopathy. Median time from heart failure diagnosis to LVAD implant was 12 months (interquartile range [IQR], 2-44) and the median time supported on LVAD was 22 months (IQR, 11-28). Two patients died within 30 days of explant. Three additional patients died during the follow-up period and all were noted to be nonadherent to medical therapy. After a mean follow-up duration of 5 years, overall survival was 52%. Mean pre-explant ejection fraction was 49%, which decreased at most recent follow-up to 32%. Mean pre-explant left ventricular internal diameter in diastole (LVIDD) was 4.37 cm and increased to 5.52 cm at most recent follow-up. Continuous-flow left ventricular assist device explantation is feasible and safe in select patients.
Collapse
Affiliation(s)
- Robert S Zhang
- From the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas C Hanff
- From the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carli J Peters
- From the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter T Evans
- From the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Judy Marble
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Eduardo Rame
- Division of Cardiovascular Medicine, Jefferson Hospital University, Philadelphia, Pennsylvania
| | - Pavan Atluri
- Division of Cardiothoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kimberly Urgo
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Monique S Tanna
- From the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeremy A Mazurek
- From the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael A Acker
- Division of Cardiothoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marisa Cevasco
- Division of Cardiothoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edo Y Birati
- From the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joyce W Wald
- From the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Quttainah M, Raveendran VV, Saleh S, Parhar R, Aljoufan M, Moorjani N, Al-Halees ZY, AlShahid M, Collison KS, Westaby S, Al-Mohanna F. Transcriptomal Insights of Heart Failure from Normality to Recovery. Biomolecules 2022; 12:biom12050731. [PMID: 35625658 PMCID: PMC9138767 DOI: 10.3390/biom12050731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Current management of heart failure (HF) is centred on modulating the progression of symptoms and severity of left ventricular dysfunction. However, specific understandings of genetic and molecular targets are needed for more precise treatments. To attain a clearer picture of this, we studied transcriptome changes in a chronic progressive HF model. Fifteen sheep (Ovis aries) underwent supracoronary aortic banding using an inflatable cuff. Controlled and progressive induction of pressure overload in the LV was monitored by echocardiography. Endomyocardial biopsies were collected throughout the development of LV failure (LVF) and during the stage of recovery. RNA-seq data were analysed using the PANTHER database, Metascape, and DisGeNET to annotate the gene expression for functional ontologies. Echocardiography revealed distinct clinical differences between the progressive stages of hypertrophy, dilatation, and failure. A unique set of transcript expressions in each stage was identified, despite an overlap of gene expression. The removal of pressure overload allowed the LV to recover functionally. Compared to the control stage, there were a total of 256 genes significantly changed in their expression in failure, 210 genes in hypertrophy, and 73 genes in dilatation. Gene expression in the recovery stage was comparable with the control stage with a well-noted improvement in LV function. RNA-seq revealed the expression of genes in each stage that are not reported in cardiovascular pathology. We identified genes that may be potentially involved in the aetiology of progressive stages of HF, and that may provide future targets for its management.
Collapse
Affiliation(s)
- Mohammed Quttainah
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (M.Q.); (V.V.R.); (S.S.); (R.P.); (K.S.C.)
| | - Vineesh Vimala Raveendran
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (M.Q.); (V.V.R.); (S.S.); (R.P.); (K.S.C.)
| | - Soad Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (M.Q.); (V.V.R.); (S.S.); (R.P.); (K.S.C.)
| | - Ranjit Parhar
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (M.Q.); (V.V.R.); (S.S.); (R.P.); (K.S.C.)
| | - Mansour Aljoufan
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (M.A.); (Z.Y.A.-H.); (M.A.)
| | - Narain Moorjani
- Department of Cardiothoracic Surgery, Papworth Hospital, University of Cambridge, Cambridge CB23 3RE, UK;
| | - Zohair Y. Al-Halees
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (M.A.); (Z.Y.A.-H.); (M.A.)
| | - Maie AlShahid
- Heart Centre, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (M.A.); (Z.Y.A.-H.); (M.A.)
| | - Kate S. Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (M.Q.); (V.V.R.); (S.S.); (R.P.); (K.S.C.)
| | - Stephen Westaby
- Oxford Heart Centre, John Radcliffe Hospital, Oxford OX9 3DU, UK;
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia; (M.Q.); (V.V.R.); (S.S.); (R.P.); (K.S.C.)
- Correspondence:
| |
Collapse
|
6
|
Gonzalez J, Callan P. Invasive Haemodynamic Assessment Before and After Left Ventricular Assist Device Implantation: A Guide to Current Practice. Interv Cardiol 2021; 16:e34. [PMID: 35106070 PMCID: PMC8785090 DOI: 10.15420/icr.2021.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/10/2021] [Indexed: 11/06/2022] Open
Abstract
Mechanical circulatory support for the management of advanced heart failure is a rapidly evolving field. The number of durable long-term left ventricular assist device (LVAD) implantations increases each year, either as a bridge to heart transplantation or as a stand-alone ‘destination therapy’ to improve quantity and quality of life for people with end-stage heart failure. Advances in cardiac imaging and non-invasive assessment of cardiac function have resulted in a diminished role for right heart catheterisation (RHC) in general cardiology practice; however, it remains an essential tool in the evaluation of potential LVAD recipients, and in their long-term management. In this review, the authors discuss practical aspects of performing RHC and potential complications. They describe the haemodynamic markers associated with a poor prognosis in patients with left ventricular systolic dysfunction and evaluate the measures of right ventricular (RV) function that predict risk of RV failure following LVAD implantation. They also discuss the value of RHC in the perioperative period; when monitoring for longer term complications; and in the assessment of potential left ventricular recovery.
Collapse
Affiliation(s)
| | - Paul Callan
- Wythenshawe Cardiothoracic Transplant Unit, Manchester Foundation Trust, Wythenshawe Hospital, Wythenshawe, Manchester, UK
| |
Collapse
|
7
|
Chang BY, Moyer C, Katerji AE, Keller SP, Edelman ER. A Scalable Approach to Determine Intracardiac Pressure From Mechanical Circulatory Support Device Signals. IEEE Trans Biomed Eng 2020; 68:905-913. [PMID: 32784129 DOI: 10.1109/tbme.2020.3016220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Effective mechanical circulatory support (MCS) relies on cardiac function measures to guide titration. Left ventricular end diastolic pressure (LVEDP) is a useful measure that is indirectly estimated using pulmonary artery catheters (PACs). PACs require additional intervention and provide intermittent and unreliable estimations. MCS device signals can estimate LVEDP but are prone to inter-device variability and require rigorous specialized characterization. We present a scalable and implementable approach to calculate LVEDP continuously using device signals. METHODS LVEDP was calculated from MCS device measured aortic pressure and motor current, which approximates the pressure head between the aorta and left ventricle. This motor current-pressure head relationship is device-specific but approximated using existing flow calibration and assumed physiologic relationships. Performance was evaluated with comparison from direct measurement of LVEDP in a series of acute animal models. RESULTS LVEDP measures (n = 178,279) from 18 animals had good correlation (r = 0.84) and calibration (Bland-Altman limits of agreement -7.77 to 7.63 mmHg; mean bias -0.07 ± 0.02 mmHg). The total mean error prediction interval was -3.42 to 3.32 mmHg and RMS error was 3.85 mmHg. CONCLUSION LVEDP can be continuously calculated using device signals without specialized characterization. Calculated LVEDP values improved upon PAC estimations and were found using a scalable and manufacturer-accessible method. SIGNIFICANCE This method improves upon existing LVEDP measures without the need for rigorous characterization, external calibration, or additional intervention; this allows widescale deployment of continuous LVEDP measurement for patients on MCS and demonstrates key considerations necessary to translate research-grade technologies.
Collapse
|
8
|
Optimal Mechanical Unloading in Left Ventricular Assist Device Recipients Relates to Progressive Up-Titration in Pump Speed. J Am Soc Echocardiogr 2020; 33:583-593. [PMID: 32173204 DOI: 10.1016/j.echo.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/22/2019] [Accepted: 01/04/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Left ventricular (LV) assist devices (LVADs) are known to elicit reverse remodeling by mechanically unloading the left ventricle. Current guidelines target a reduction in LV end-diastolic diameter (LVEDD) of 15% compared with pre-LVAD dimensions; however, there is significant heterogeneity in the degree of unloading achieved. We sought to investigate factors associated with mechanical unloading at 6 months of LVAD support. METHODS Data were retrospectively collected for 75 LVAD recipients at five time points: pre-LVAD, within 14 days post-LVAD, and at 1, 3, and 6 months post-LVAD. The percentage change in LVEDD between the pre-LVAD and 6 months post-LVAD time points was termed ΔLVEDD. Optimal LV unloading was defined as ΔLVEDD of ≥15% at 6 months. Patients who achieved optimal unloading (group A, n = 30) were compared with patients who did not (group B, n = 45). RESULTS At 6 months, optimally unloaded patients (group A) demonstrated higher fractional shortening (15% ± 10% vs 10% ± 7%, P = .007), lower rates of moderate or severe mitral regurgitation (10% vs 33%, P = .02), and lower pulmonary capillary wedge pressure (9 ± 4 vs 16 ± 7 mm Hg, P = .02). Right ventricular dysfunction was more prevalent at 6 months in poorly unloaded (group B) patients (73% vs 43%, P = .008). Between hospital discharge and 6 months, the percentage increase in pump speed (Δ revolutions per minute) was higher in group A patients (4.4% ± 3.7% vs 0.1% ± 2.6%, P < .001). In a multivariate analysis, Δ revolutions per minute and tricuspid annular systolic velocity (S') at 6 months were independently associated with 6-month ΔLVEDD. CONCLUSIONS Recipients of LVADs who undergo progressive pump speed up-titration during outpatient follow-up are more likely to sustain optimal LV unloading. Progressive LVAD-related right ventricular failure is prevalent in suboptimally unloaded patients.
Collapse
|
9
|
Jiritano F, Lo Coco V, Matteucci M, Fina D, Willers A, Lorusso R. Temporary Mechanical Circulatory Support in Acute Heart Failure. Card Fail Rev 2020; 6:e01. [PMID: 32257388 PMCID: PMC7111303 DOI: 10.15420/cfr.2019.02] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023] Open
Abstract
Cardiogenic shock (CS) is a challenging syndrome, associated with significant morbidity and mortality. Although pharmacological therapies are successful and can successfully control this acute cardiac illness, some patients remain refractory to drugs. Therefore, a more aggressive treatment strategy is needed. Temporary mechanical circulatory support (TCS) can be used to stabilise patients with decompensated heart failure. In the last two decades, the increased use of TCS has led to several kinds of devices becoming available. However, indications for TCS and device selection are part of a complex process. It is necessary to evaluate the severity of CS, any early and prompt haemodynamic resuscitation, prior TCS, specific patient risk factors, technical limitations and adequacy of resources and training, as well as an assessment of whether care would be futile. This article examines options for commonly used TCS devices, including intra-aortic balloon pumps, a pulsatile percutaneous ventricular assist device (the iVAC), veno-arterial extra-corporeal membrane oxygenation and Impella (Abiomed) and TandemHeart (LivaNova) percutaneous ventricular assist device.
Collapse
Affiliation(s)
- Federica Jiritano
- Cardiothoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute MaastrichtMaastricht, the Netherlands
- Cardiac Surgery Unit, University Magna Graecia of CatanzaroCatanzaro, Italy
| | - Valeria Lo Coco
- Cardiothoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute MaastrichtMaastricht, the Netherlands
| | - Matteo Matteucci
- Cardiothoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute MaastrichtMaastricht, the Netherlands
- Department of Cardiac Surgery, Circolo Hospital, University of InsubriaVarese, Italy
| | - Dario Fina
- Cardiothoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute MaastrichtMaastricht, the Netherlands
- University of Milan, IRCCS Policlinico San DonatoMilan, Italy
| | - Anne Willers
- Cardiothoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute MaastrichtMaastricht, the Netherlands
| | - Roberto Lorusso
- Cardiothoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Cardiovascular Research Institute MaastrichtMaastricht, the Netherlands
| |
Collapse
|
10
|
Pokorný M, Mrázová I, Kubátová H, Piťha J, Malý J, Pirk J, Maxová H, Melenovský V, Šochman J, Sadowski J, Červenka L, Čermák Z, Volenec K, Netuka I. Intraventricular placement of a spring expander does not attenuate cardiac atrophy of the healthy heart induced by unloading via heterotopic heart transplantation. Physiol Res 2019; 68:567-580. [PMID: 31177788 DOI: 10.33549/physiolres.933936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An important complication of the prolonged left ventricle assist device support in patients with heart failure is unloading-induced cardiac atrophy which proved resistant to various treatments. Heterotopic heart transplantation (HTx) is the usual experimental model to study this process. We showed previously that implantation of the newly designed intraventricular spring expander can attenuate the atrophy when examined after HTx in the failing heart (derived from animals with established heart failure). The present study aimed to examine if enhanced isovolumic loading achieved by implantation of the expander would attenuate cardiac post-HTx atrophy also in the healthy heart. Cardiac atrophy was assessed as the ratio of the transplanted-to-native heart weight (HW) and its degree was determined on days 7, 14, 21 and 28 after HTx. The transplantation resulted in 32±3, 46±2, 48±3 and 46±3 % HW loss when measured at the four time points; implantation of the expander had no significant effect on these decreases. We conclude that enhanced isovolumic loading achieved by intraventricular implantation of the expander does not attenuate the development of cardiac atrophy after HTx in the healthy heart. This indicates that such an approach does not represent a useful therapeutic measure to attenuate the development of unloading-induced cardiac atrophy.
Collapse
Affiliation(s)
- M Pokorný
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Potapov EV, Antonides C, Crespo-Leiro MG, Combes A, Färber G, Hannan MM, Kukucka M, de Jonge N, Loforte A, Lund LH, Mohacsi P, Morshuis M, Netuka I, Özbaran M, Pappalardo F, Scandroglio AM, Schweiger M, Tsui S, Zimpfer D, Gustafsson F. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg 2019; 56:230-270. [PMID: 31100109 PMCID: PMC6640909 DOI: 10.1093/ejcts/ezz098] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Long-term mechanical circulatory support (LT-MCS) is an important treatment modality for patients with severe heart failure. Different devices are available, and many-sometimes contradictory-observations regarding patient selection, surgical techniques, perioperative management and follow-up have been published. With the growing expertise in this field, the European Association for Cardio-Thoracic Surgery (EACTS) recognized a need for a structured multidisciplinary consensus about the approach to patients with LT-MCS. However, the evidence published so far is insufficient to allow for generation of meaningful guidelines complying with EACTS requirements. Instead, the EACTS presents an expert opinion in the LT-MCS field. This expert opinion addresses patient evaluation and preoperative optimization as well as management of cardiac and non-cardiac comorbidities. Further, extensive operative implantation techniques are summarized and evaluated by leading experts, depending on both patient characteristics and device selection. The faculty recognized that postoperative management is multidisciplinary and includes aspects of intensive care unit stay, rehabilitation, ambulatory care, myocardial recovery and end-of-life care and mirrored this fact in this paper. Additionally, the opinions of experts on diagnosis and management of adverse events including bleeding, cerebrovascular accidents and device malfunction are presented. In this expert consensus, the evidence for the complete management from patient selection to end-of-life care is carefully reviewed with the aim of guiding clinicians in optimizing management of patients considered for or supported by an LT-MCS device.
Collapse
Affiliation(s)
- Evgenij V Potapov
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Christiaan Antonides
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Maria G Crespo-Leiro
- Complexo Hospitalario Universitario A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), CIBERCV, UDC, La Coruña, Spain
| | - Alain Combes
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition, Paris, France
- Service de médecine intensive-réanimation, Institut de Cardiologie, APHP, Hôpital Pitié–Salpêtrière, Paris, France
| | - Gloria Färber
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Margaret M Hannan
- Department of Medical Microbiology, University College of Dublin, Dublin, Ireland
| | - Marian Kukucka
- Department of Anaesthesiology, German Heart Center Berlin, Berlin, Germany
| | - Nicolaas de Jonge
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Antonio Loforte
- Department of Cardiothoracic, S. Orsola Hospital, Transplantation and Vascular Surgery, University of Bologna, Bologna, Italy
| | - Lars H Lund
- Department of Medicine Karolinska Institute, Heart and Vascular Theme, Karolinska University Hospital, Solna, Sweden
| | - Paul Mohacsi
- Department of Cardiovascular Surgery Swiss Cardiovascular Center, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Michiel Morshuis
- Clinic for Thoracic and Cardiovascular Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany
| | - Ivan Netuka
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Mustafa Özbaran
- Department of Cardiovascular Surgery, Ege University, Izmir, Turkey
| | - Federico Pappalardo
- Advanced Heart Failure and Mechanical Circulatory Support Program, Cardiac Intensive Care, San Raffaele Hospital, Vita Salute University, Milan, Italy
| | - Anna Mara Scandroglio
- Department of Anesthesia and Intensive Care, San Raffaele Hospital, Vita Salute University, Milan, Italy
| | - Martin Schweiger
- Department of Congenital Pediatric Surgery, Zurich Children's Hospital, Zurich, Switzerland
| | - Steven Tsui
- Royal Papworth Hospital, Cambridge, United Kingdom
| | - Daniel Zimpfer
- Department of Surgery, Division of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
Sustained Cardiac Recovery Hinges on Timing and Natural History of Underlying Condition. Am J Med Sci 2018; 356:47-55. [DOI: 10.1016/j.amjms.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 02/21/2018] [Indexed: 01/12/2023]
|
13
|
Isovolumic loading of the failing heart by intraventricular placement of a spring expander attenuates cardiac atrophy after heterotopic heart transplantation. Biosci Rep 2018; 38:BSR20180371. [PMID: 29743195 PMCID: PMC6019382 DOI: 10.1042/bsr20180371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiac atrophy is the most common complication of prolonged application of the left ventricle (LV) assist device (LVAD) in patients with advanced heart failure (HF). Our aim was to evaluate the course of unloading-induced cardiac atrophy in rats with failing hearts, and to examine if increased isovolumic loading obtained by intraventricular implantation of an especially designed spring expander would attenuate this process. Heterotopic abdominal heart transplantation (HTx) was used as a rat model of heart unloading. HF was induced by volume overload achieved by creation of the aorto-caval fistula (ACF). The degree of cardiac atrophy was assessed as the weight ratio of the heterotopically transplanted heart (HW) to the control heart. Isovolumic loading was increased by intraventricular implantation of a stainless steel three-branch spring expander. The course of cardiac atrophy was evaluated on days 7, 14, 21, and 28 after HTx Seven days unloading by HTx in failing hearts sufficed to substantially decrease the HW (-59 ± 3%), the decrease progressed when measured on days 14, 21, and 28 after HTx Implantation of the spring expander significantly reduced the decreases in whole HW at all the time points (-39 ± 3 compared with -59 ± 3, -52 ± 2 compared with -69 ± 3, -51 ± 2 compared with -71 ± 2, and -44 ± 2 compared with -71 ± 3%, respectively; P<0.05 in each case). We conclude that the enhanced isovolumic heart loading obtained by implantation of the spring expander attenuates the development of unloading-induced cardiac atrophy in the failing rat heart.
Collapse
|
14
|
Pokorný M, Mrázová I, Malý J, Pirk J, Netuka I, Vaňourková Z, Doleželová Š, Červenková L, Maxová H, Melenovský V, Šochman J, Sadowski J, Červenka L. Effects of increased myocardial tissue concentration of myristic, palmitic and palmitoleic acids on the course of cardiac atrophy of the failing heart unloaded by heterotopic transplantation. Physiol Res 2018; 67:13-30. [PMID: 29137478 DOI: 10.33549/physiolres.933637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present experiments were performed to evaluate if increased heart tissue concentration of fatty acids, specifically myristic, palmitic and palmitoleic acids that are believed to promote physiological heart growth, can attenuate the progression of unloading-induced cardiac atrophy in rats with healthy and failing hearts. Heterotopic abdominal heart transplantation (HT(x)) was used as a model for heart unloading. Cardiac atrophy was assessed from the ratio of the native- to-transplanted heart weight (HW). The degree of cardiac atrophy after HT(x) was determined on days 7, 14, 21 and 28 after HT(x) in recipients of either healthy or failing hearts. HT(x) of healthy hearts resulted in 23+/-3, 46+/-3, 48+/-4 and 46+/-4 % HW loss at the four time-points. HT(x) of the failing heart resulted in even greater HW losses, of 46+/-4, 58+/-3, 66+/-2 and 68+/-4 %, respectively (P<0.05). Activation of "fetal gene cardiac program" (e.g. beta myosin heavy chain gene expression) and "genes reflecting cardiac remodeling" (e.g. atrial natriuretic peptide gene expression) after HT(x) was greater in failing than in healthy hearts (P<0.05 each time). Exposure to isocaloric high sugar diet caused significant increases in fatty acid concentrations in healthy and in failing hearts. However, these increases were not associated with any change in the course of cardiac atrophy, similarly in healthy and post-HT(x) failing hearts. We conclude that increasing heart tissue concentrations of the fatty acids allegedly involved in heart growth does not attenuate the unloading-induced cardiac atrophy.
Collapse
Affiliation(s)
- M Pokorný
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gustafsson F. Management of patients with cardiogenic shock on temporary mechanical circulatory support: urgent transplantation or on to the next pump? Eur J Heart Fail 2017; 20:187-189. [DOI: 10.1002/ejhf.1023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023] Open
|
16
|
Dimarakis I, Shaw S, Venkateswaran R. Durable left ventricular assist device as a bridge to recovery for addisonian crisis related cardiomyopathy. J Card Surg 2017; 32:665-666. [PMID: 28895194 DOI: 10.1111/jocs.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 19-year-old female with addisonian crisis-related cardiomyopathy underwent temporary mechanical circulatory support followed by insertion of a durable left ventricular assist device. Successful device explanation was possible 2.5 years following implantation.
Collapse
Affiliation(s)
- Ioannis Dimarakis
- Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester, United Kingdom
| | - Steven Shaw
- Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester, United Kingdom
| | | |
Collapse
|
17
|
Metra M. October 2016 at a glance: treatment of heart failure. Eur J Heart Fail 2016; 18:1209-1210. [DOI: 10.1002/ejhf.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health; University of Brescia; Italy
| |
Collapse
|