1
|
van Essen MF, Peereboom ETM, Schlagwein N, van Gijlswijk-Janssen DJ, Nelemans T, Joeloemsingh JV, van den Berg CW, Prins J, Clark SJ, Schmidt CQ, Trouw LA, van Kooten C. Preferential production and secretion of the complement regulator factor H-like protein 1 (FHL-1) by human myeloid cells. Immunobiology 2023; 228:152364. [PMID: 36881973 DOI: 10.1016/j.imbio.2023.152364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Factor H is a pivotal complement regulatory protein that is preferentially produced by the liver and circulates in high concentrations in serum. There has been an increasing interest in the extrahepatic production of complement factors, including by cells of the immune system, since this contributes to non-canonical functions of local complement activation and regulation. Here we investigated the production and regulation of factor H and its splice variant factor H-like protein 1 (FHL-1) by human myeloid cells. As validation, we confirmed the predominant presence of intact factor H in serum, despite a strong but comparable mRNA expression of CFH and FHL1 in liver. Comparable levels of CFH and FHL1 were also observed in renal tissue, although a dominant staining for FHL-1 was shown within the proximal tubules. Human in vitro generated pro- and anti-inflammatory macrophages both expressed and produced factor H/FHL-1, but this was strongest in pro-inflammatory macrophages. Production was not affected by LPS activation, but was increased upon stimulation with IFN-γ or CD40L. Importantly, in both macrophage subsets mRNA expression of FHL1 was significantly higher than CFH. Moreover, production of FHL-1 protein could be confirmed using precipitation and immunoblotting of culture supernatants. These data identify macrophages as producers of factor H and FHL-1, thereby potentially contributing to local complement regulation at sites of inflammation.
Collapse
Affiliation(s)
- Mieke F van Essen
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Emma T M Peereboom
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicole Schlagwein
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Daniëlle J van Gijlswijk-Janssen
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Tessa Nelemans
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jivan V Joeloemsingh
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Cathelijne W van den Berg
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jurriën Prins
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Simon J Clark
- Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Leendert A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cees van Kooten
- Division of Nephrology and Transplant Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Pisarenka S, Meyer NC, Xiao X, Goodfellow R, Nester CM, Zhang Y, Smith RJH. Modeling C3 glomerulopathies: C3 convertase regulation on an extracellular matrix surface. Front Immunol 2023; 13:1073802. [PMID: 36846022 PMCID: PMC9947773 DOI: 10.3389/fimmu.2022.1073802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction C3 glomerulopathies (C3G) are ultra-rare complement-mediated diseases that lead to end-stage renal disease (ESRD) within 10 years of diagnosis in ~50% of patients. Overactivation of the alternative pathway (AP) of complement in the fluid phase and on the surface of the glomerular endothelial glycomatrix is the underlying cause of C3G. Although there are animal models for C3G that focus on genetic drivers of disease, in vivo studies of the impact of acquired drivers are not yet possible. Methods Here we present an in vitro model of AP activation and regulation on a glycomatrix surface. We use an extracellular matrix substitute (MaxGel) as a base upon which we reconstitute AP C3 convertase. We validated this method using properdin and Factor H (FH) and then assessed the effects of genetic and acquired drivers of C3G on C3 convertase. Results We show that C3 convertase readily forms on MaxGel and that this formation was positively regulated by properdin and negatively regulated by FH. Additionally, Factor B (FB) and FH mutants impaired complement regulation when compared to wild type counterparts. We also show the effects of C3 nephritic factors (C3Nefs) on convertase stability over time and provide evidence for a novel mechanism of C3Nef-mediated C3G pathogenesis. Discussion We conclude that this ECM-based model of C3G offers a replicable method by which to evaluate the variable activity of the complement system in C3G, thereby offering an improved understanding of the different factors driving this disease process.
Collapse
Affiliation(s)
- Sofiya Pisarenka
- Molecular Otolaryngology and Renal Research Laboratories, Caver College of Medicine, University of Iowa, Iowa City, IA, United States
- Molecular Medicine Graduate Program, Caver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Nicole C. Meyer
- Molecular Otolaryngology and Renal Research Laboratories, Caver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Xue Xiao
- Molecular Otolaryngology and Renal Research Laboratories, Caver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Renee Goodfellow
- Molecular Otolaryngology and Renal Research Laboratories, Caver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Carla M. Nester
- Molecular Otolaryngology and Renal Research Laboratories, Caver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Caver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Caver College of Medicine, University of Iowa, Iowa City, IA, United States
- Molecular Medicine Graduate Program, Caver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Moore SR, Menon SS, Galwankar NS, Khuder SA, Pangburn MK, Ferreira VP. A novel assay that characterizes properdin function shows neutrophil-derived properdin has a distinct oligomeric distribution. Front Immunol 2023; 13:918856. [PMID: 36713423 PMCID: PMC9880526 DOI: 10.3389/fimmu.2022.918856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Properdin acts as an essential positive regulator of the alternative pathway of complement by stabilizing enzymatic convertases. Identical properdin monomers form head-to-tail associations of oligomers in a reported 20:54:26 ratio (most often described as an approximate 1:2:1 ratio) of tetramers (P4), trimers (P3), and dimers (P2), in blood, under normal physiological conditions. Oligomeric size is proportional to properdin function with tetramers being more active, followed by trimers and dimers. Neutrophils are the most abundant granulocyte, are recruited to inflammatory microenvironments, and are a significant source of properdin, yet the ratio of properdin oligomers released from neutrophils is unknown. The oligomer ratio of neutrophil-derived properdin could have functional consequences in local microenvironments where neutrophils are abundant and complement drives inflammation. We investigated the oligomer properties of neutrophil-derived properdin, as compared to that of normal human sera, using a novel ELISA-based method that detects function of properdin in a way that was proportional to the oligomeric size of properdin (i.e., the larger the oligomer, the higher the detected function). Unexpectedly, neutrophil-derived properdin had 5-fold lower function than donor-matched serum-derived properdin. The lower function was due to a lower percentage of tetramers/trimers and more dimers, indicating a significantly different P4:P3:P2 ratio in neutrophil-derived properdin (18:34:48) as compared to donor-matched serum (29:43:29). Release of lower-order oligomers by neutrophils may constitute a novel regulatory mechanism to control the rate of complement activation in cellular microenvironments. Further studies to determine the factors that affect properdin oligomerization and whether, or how, the predominant dimers in neutrophil-derived properdin, assimilate to the ~1:2:1 ratio found in serum are warranted.
Collapse
Affiliation(s)
- Sara R. Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S. Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Neeti S. Galwankar
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Sadik A. Khuder
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Michael K. Pangburn
- Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, United States
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States,*Correspondence: Viviana P. Ferreira,
| |
Collapse
|
4
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
van Essen MF, Schlagwein N, van Gijlswijk-Janssen DJ, Ruben JM, van Kooten C. Properdin produced by dendritic cells contributes to the activation of T cells. Immunobiology 2022; 227:152246. [PMID: 35843030 DOI: 10.1016/j.imbio.2022.152246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 11/05/2022]
Abstract
The complement system does not only play an important role in the defence against microorganism and pathogens, but also contributes to the regulation of innate and adaptive immunity. Especially activation fragments C3a and C5a and complement activation at the interface of antigen presenting cell (APC) and T cell, were shown to have a role in T cell activation and proliferation. Whereas most complement factors are produced by the liver, properdin, a positive regulator of the C3 convertase, is mainly produced by myeloid cells. Here we show that properdin can be detected in myeloid cell infiltrate during human renal allograft rejection. In vitro, properdin is produced and secreted by human immature dendritic cells (iDCs), which is further increased by CD40-L-matured DCs (mDCs). Transfection with a specific properdin siRNA reduced properdin secretion by iDCs and mDCs, without affecting the expression of co-stimulatory markers CD80 and CD86. Co-culture of properdin siRNA-transfected iDCs and mDCs with human allogeneic T cells resulted in reduced T cell proliferation, especially under lower DC-T cell ratio's (1:30 and 1:90 ratio). In addition, T cell cytokines were altered, including a reduced TNF-α and IL-17 secretion by T cells co-cultured with properdin siRNA-transfected iDCs. Taken together, these results indicate a local role for properdin during the interaction of DCs and allogeneic T cells, contributing to the shaping of T cell proliferation and activation.
Collapse
Affiliation(s)
- Mieke F van Essen
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicole Schlagwein
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jurjen M Ruben
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | -
- Div of Nephrology and Transplant Medicine, Dept. of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|