1
|
Li D, Liu C, Kang Z, Zheng Y, Wang Y. Imbalances of Th1/Th2 and Tc1/Tc2 are Associated With Active Cytomegalovirus Infection in Infant Liver Transplant Recipients. Transplant Proc 2024; 56:2172-2177. [PMID: 39638715 DOI: 10.1016/j.transproceed.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Because cytomegalovirus (CMV) infection is one of the most common complications following liver transplantation (LT), it is important to analyze the impact of CMV infection on the LT-associated changes in T cells polarization. This study aimed to investigate T helper (Th) and T cytotoxic (Tc) cells polarization and their correlation in infant LT recipients with active CMV infection. METHODS Twenty infant LT recipients with active CMV infection (the CMV group) and 20 recipients without CMV infection (the stable group) were enrolled. The percentages of Th1, Th2, Tc1, and Tc2 cells were detected by flow cytometry after intracellular staining for cytokines (IFN-γ and IL-10, respectively) in peripheral blood. The correlation between Th and Tc cells was analyzed by Pearson correlation coefficient. RESULTS The percentages of Th1 and Tc1 cells were significantly decreased, whereas the percentages of Tc2 cells were significantly increased in CMV group compared with the stable group, along with significant reduction of Th1/Th2 and Tc1/Tc2 ratios (P < .01). The percentages of Th1 cells were positively correlated with Tc1 cells (P < .01). A higher Th1/Th2 and Tc1/Tc2 ratios were showed in the CMV group after antiviral therapy than those in the CMV group before therapy (P < .01). CONCLUSIONS Our findings show an imbalanced Th1/Th2 and Tc1/Tc2 immunity in infant LT recipients with active CMV infection, which were involved in the pathogenesis of CMV infection.
Collapse
Affiliation(s)
- Dan Li
- The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Clinical Laboratory Medicine, Fushun Central Hospital, Fushun, China
| | - Chun Liu
- Blood Transfusion Department, Tianjin First Central Hospital, Tianjin, China
| | - Zhongyu Kang
- Blood Transfusion Department, Tianjin First Central Hospital, Tianjin, China
| | - Yan Zheng
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuliang Wang
- The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Fan Y, Ge Y, Niu K, Li Y, Qi LW, Zhu H, Ma G. MLXIPL associated with tumor-infiltrating CD8+ T cells is involved in poor prostate cancer prognosis. Front Immunol 2024; 15:1364329. [PMID: 38698844 PMCID: PMC11063283 DOI: 10.3389/fimmu.2024.1364329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Within tumor microenvironment, the presence of preexisting antitumor CD8+ T Q7 cells have been shown to be associated with a favorable prognosis in most solid cancers. However, in the case of prostate cancer (PCa), they have been linked to a negative impact on prognosis. Methods To gain a deeper understanding of the contribution of infiltrating CD8+ T cells to poor prognosis in PCa, the infiltration levelsof CD8+ T cells were estimated using the TCGA PRAD (The Cancer Genome Atlas Prostate Adenocarcinoma dataset) and MSKCC (Memorial Sloan Kettering Cancer Center) cohorts. Results Bioinformatic analyses revealed that CD8+ T cells likely influence PCa prognosis through increased expression of immune checkpoint molecules and enhanced recruitment of regulatory T cells. The MLXIPL was identified as the gene expressed in response to CD8+ T cell infiltration and was found to be associated with PCa prognosis. The prognostic role of MLXIPL was examined in two cohorts: TCGA PRAD (p = 2.3E-02) and the MSKCC cohort (p = 1.6E-02). Subsequently, MLXIPL was confirmed to be associated with an unfavorable prognosis in PCa, as evidenced by an independent cohort study (hazard ratio [HR] = 2.57, 95% CI: 1.42- 4.65, p = 1.76E-03). Discussion In summary, the findings suggested that MLXIPL related to tumor-infiltrating CD8+ T cells facilitated a poor prognosis in PCa.
Collapse
Affiliation(s)
- Yuanming Fan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuqiu Ge
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kaiming Niu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Haixia Zhu
- Clinical Laboratory, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Gaoxiang Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Oncology, Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Su R, Zhang T, Wang H, Yan G, Wu R, Zhang X, Gao C, Li X, Wang C. New sights of low dose IL-2: Restoration of immune homeostasis for viral infection. Immunology 2024; 171:324-338. [PMID: 37985960 DOI: 10.1111/imm.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Viral infection poses a significant threat to human health. In addition to the damage caused by viral replication, the immune response it triggers often leads to more serious adverse consequences. After the occurrence of viral infection, in addition to the adverse consequences of infection, chronic infections can also lead to virus-related autoimmune diseases and tumours. At the same time, the immune response triggered by viral infection is complex, and dysregulated immune response may lead to the occurrence of immune pathology and macrophage activation syndrome. In addition, it may cause secondary immune suppression, especially in patients with compromised immune system, which could lead to the occurrence of secondary infections by other pathogens. This can often result in more severe clinical outcomes. Therefore, regarding the treatment of viral infections, restoring the balance of the immune system is crucial in addition to specific antiviral medications. In recent years, scientists have made an interesting finding that low dose IL-2 (ld-IL-2) could potentially have a crucial function in regulating the immune system and reducing the chances of infection, especially viral infection. Ld-IL-2 exerts immune regulatory effects in different types of viral infections by modulating CD4+ T subsets, CD8+ T cells, natural killer cells, and so on. Our review summarised the role of IL-2 or IL-2 complexes in viral infections. Ld-IL-2 may be an effective strategy for enhancing host antiviral immunity and preventing infection from becoming chronic; additionally, the appropriate use of it can help prevent excessive inflammatory response after infection. In the long term, it may reduce the occurrence of infection-related autoimmune diseases and tumours by promoting the restoration of early immune homeostasis. Furthermore, we have also summarised the application of ld-IL-2 in the context of autoimmune diseases combined with viral infections; it may be a safe and effective strategy for restoring immune homeostasis without compromising the antiviral immune response. In conclusion, focusing on the role of ld-IL-2 in viral infections may provide a new perspective for regulating immune responses following viral infections and improving prognosis.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Tingting Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Gaofei Yan
- Second department, Hamony Long Stomatological Hospital, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital/Children's Hospital Boston, Joint Program in Transfusion Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Bailly C. Etoposide: A rider on the cytokine storm. Cytokine 2023; 168:156234. [PMID: 37269699 DOI: 10.1016/j.cyto.2023.156234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023]
Abstract
For more than 40 years, the epipodophyllotoxin drug etoposide is prescribed to treat cancer. This semi-synthetic compound remains extensively used to treat advanced small-cell lung cancer and in various chemotherapy regimen for autologous stem cell transplantation, and other anticancer protocols. Etoposide is a potent topoisomerase II poison, causing double-stranded DNA breaks which lead to cell death if they are not repaired. It is also a genotoxic compound, responsible for severe side effects and secondary leukemia occasionally. Beyond its well-recognized function as an inducer of cancer cell death (a "killer on the road"), etoposide is also useful to treat immune-mediated inflammatory diseases associated with a cytokine storm syndrome. The drug is essential to the treatment of hemophagocytic lymphohistiocytosis (HLH) and the macrophage activation syndrome (MAS), in combination with a corticosteroid and other drugs. The use of etoposide to treat HLH, either familial or secondary to a viral or parasitic infection, or treatment-induced HLH and MAS is reviewed here. Etoposide dampens inflammation in HLH patients via an inhibition of the production of pro-inflammatory mediators, such as IL-6, IL-10, IL-18, IFN-γ and TNF-α, and reduction of the secretion of the alarmin HMGB1. The modulation of cytokines production by etoposide contributes to deactivate T cells and to dampen the immune stimulation associated to the cytokine storm. This review discussed the clinical benefits and mechanism of action of etoposide (a "rider on the storm") in the context of immune-mediated inflammatory diseases, notably life-threatening HLH and MAS. The question arises as to whether the two faces of etoposide action can apply to other topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| |
Collapse
|
5
|
Ehl S, Thimme R. Immune‐mediated pathology as a consequence of impaired immune reactions: the IMPATH paradox. Eur J Immunol 2022; 52:1386-1389. [DOI: 10.1002/eji.202250069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine Medical Center ‐ University of Freiburg Freiburg Germany
| | - Robert Thimme
- Dept. of Medicine II, Medical Center ‐ University of Freiburg and Faculty of Medicine Medical Center ‐ University of Freiburg Freiburg Germany
| |
Collapse
|