1
|
Liu J, Zhang L, Liu L, Wu T, Wang L, Han Q. The potential capacities of FTY720: Novel therapeutic functions, targets, and mechanisms against diseases. Eur J Med Chem 2025; 290:117508. [PMID: 40120496 DOI: 10.1016/j.ejmech.2025.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Fingolimod (FTY720), an antagonist of sphingosine-1-phosphate (S1P), functions by binding to S1P receptors (S1PRs), excluding S1PR2. It received approval from the Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) in 2010. As the first non-selective oral agonist for S1PRs, FTY720's diverse and systemic receptor expression often leads to alterations in various signaling pathways and multiple systems, making it a subject of intense research. Recent studies have identified a wide range of novel or potential functions for FTY720 beyond its application in MS. These include effects on the blood-brain barrier (BBB), vascular system, organelles, and cell death, as well as potential applications in organ transplantation, immune disorders, oncological conditions, neurological and psychiatric disorders, viral infections, and hypersensitivity diseases. This paper reviews the novel roles, targets, and mechanisms of FTY720 that hold promise for clinical utility. Additionally, it summarizes FTY720's derivation and development process, the characterization and mechanism of the structure of FTY720-P bound to S1PRs, the clinical safety profile, future challenges, and potential strategies to address them. These insights aim to guide future research and applications of FTY720, maximizing its therapeutic potential.
Collapse
Affiliation(s)
- Juan Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lu Zhang
- Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, PR China
| | - Le Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Tianfeng Wu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lin Wang
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Qingzhen Han
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China.
| |
Collapse
|
2
|
Maktabi B, Shehjar F, Senger Z, Kountz L, Hasan S, Maaieh K, Hoersten K, Duric J, Shah ZA. Sphingosine-1-Phosphate Modulation in Neurological Disorders: Insights from MS and Stroke. Brain Sci 2025; 15:436. [PMID: 40426607 PMCID: PMC12110324 DOI: 10.3390/brainsci15050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Multiple sclerosis is a chronic autoimmune disease in which the immune system attacks the protective sheath or myelin that covers nerve fibers, impacting the brain's ability to communicate with other areas of the body. This abnormal immune response recruits inflammatory substances, which appear as lesions on the brain and spinal cord. A stroke is characterized by a sudden impairment of neurological function resulting from the loss or restriction of blood flow due to acute damage to a localized area of the central nervous system, including the brain, retina, or spinal cord. While strokes, both ischemic and hemorrhagic, are different in terms of their pathogenesis to MS, mechanisms such as neuroinflammation and neurodegeneration are common denominators among these conditions. Recent studies highlight the involvement of the sphingosine-1-phosphate receptor in the treatment of strokes and how fingolimod, an S1P receptor modulator employed in MS treatment, may play a role in the treatment of stroke-like symptoms. This review aims to explore the potential link between stroke and MS, providing a comprehensive analysis of the existing evidence. It will also shed light on the role of S1P receptors in the pathophysiology of stroke, offering insights into their mechanistic contributions. Furthermore, the review will examine recent studies investigating the therapeutic potential of the S1P modulator, fingolimod, in acute stroke patients, highlighting its efficacy and potential clinical applications. Through this multifaceted approach, we hope to contribute to the development of a deeper understanding of these interconnected neurological conditions and their treatment strategies.
Collapse
Affiliation(s)
- Briana Maktabi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Zachary Senger
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Logan Kountz
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Syed Hasan
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Kenan Maaieh
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Kylee Hoersten
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Jovana Duric
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| |
Collapse
|
3
|
Patel PU, Regmi A, Dass AI, Rojas OL. Immune conversations at the border: meningeal immunity in health and disease. Front Immunol 2025; 16:1531068. [PMID: 39944687 PMCID: PMC11813769 DOI: 10.3389/fimmu.2025.1531068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/10/2025] [Indexed: 05/09/2025] Open
Abstract
The brain and spinal cord, collectively known as the central nervous system, are encapsulated by an overlapping series of membranes known as the meninges. Once considered primarily a physical barrier for central nervous system protection, the bordering meninges are now recognized as highly immunologically active. The meninges host diverse resident immune cells and serve as a critical interface with peripheral immunity, playing multifaceted roles in maintaining central nervous system homeostasis, responding to pathogenic threats, and neurological disorders. This review summarizes recent advancements in our understanding of meningeal immunity including its structural composition, physiological functions, and role in health and disease.
Collapse
Affiliation(s)
- Preya U. Patel
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Aryan Regmi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Angelina I. Dass
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Olga L. Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Li N, Wang H, Hu C, Qie S, Liu Z. Regulatory T Cells for Stroke Recovery: A Promising Immune Therapeutic Strategy. CNS Neurosci Ther 2025; 31:e70248. [PMID: 39878387 PMCID: PMC11775944 DOI: 10.1111/cns.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Stroke remains a leading cause of mortality and disability among adults. Given the restricted therapeutic window for intravascular interventions and neuroprotection during the acute phase, there has been a growing focus on tissue repair and functional recovery in the subacute and chronic phases after stroke. The pro-inflammatory microglial polarization occurs in subacute and chronic phases after stroke and may represent therapeutic targets for stroke recovery. CD4+ regulatory T cells (Tregs), a subtype of T cells with immunosuppressive effects, have been shown to be important in stroke. Tregs infiltrate into the brain primarily during the subacute and chronic phases following a stroke. Infiltrating Tregs play a critical role in mitigating pro-inflammatory microglial responses, modulating the immune microenvironment, and promoting the functional restoration of the damaged brain following a stroke. METHODS A systematic literature search was conducted in PubMed, Scopus, and Web of Science and then conduct a comprehensive analysis of the searched literature. RESULTS This review provides a comprehensive summary of recent preclinical research advances on the role of Tregs in stroke, with a particular focus on their reparative functions during the subacute and chronic phases. It discusses changes in peripheral and brain infiltrating Tregs post-stroke, their functions and underlying mechanisms, and therapeutic strategies involving Tregs. Additionally, this review explores the potential and challenges associated with the clinical application of Tregs in ischemic stroke. CONCLUSION Treg cell-related therapy represents a promising immune-therapeutic strategy for stroke recovery. However, there are several critical issues that must be resolved before its advancement to clinical application.
Collapse
Affiliation(s)
- Ning Li
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Hujun Wang
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Changbin Hu
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| | - Zongjian Liu
- Department of Research, Beijing Rehabilitation HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Shang Y, Zheng L, Du Y, Shang T, Liu X, Zou W. Role of Regulatory T Cells in Intracerebral Hemorrhage. Mol Neurobiol 2025; 62:518-532. [PMID: 38877366 DOI: 10.1007/s12035-024-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease that can lead to severe neurological dysfunction in surviving patients, resulting in a heavy burden on patients and their families. When ICH occurs, the blood‒brain barrier is disrupted, thereby promoting immune cell migration into damaged brain tissue. As important immunosuppressive T cells, regulatory T (Treg) cells are involved in the maintenance of immune homeostasis and the suppression of immune responses after ICH. Treg cells mitigate brain tissue damage after ICH in a variety of ways, such as inhibiting the neuroinflammatory response, protecting against blood‒brain barrier damage, reducing oxidative stress damage and promoting nerve repair. In this review, we discuss the changes in Treg cells in ICH clinical patients and experimental animals, the mechanisms by which Treg cells regulate ICH and treatments targeting Treg cells in ICH, aiming to support new therapeutic strategies for clinical treatment.
Collapse
Affiliation(s)
- Yaxin Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Yunpeng Du
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Tong Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Xueting Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
6
|
Yao Y, Liu F, Gu Z, Wang J, Xu L, Yu Y, Cai J, Ren R. Emerging diagnostic markers and therapeutic targets in post-stroke hemorrhagic transformation and brain edema. Front Mol Neurosci 2023; 16:1286351. [PMID: 38178909 PMCID: PMC10764516 DOI: 10.3389/fnmol.2023.1286351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Stroke is a devastating condition that can lead to significant morbidity and mortality. The aftermath of a stroke, particularly hemorrhagic transformation (HT) and brain edema, can significantly impact the prognosis of patients. Early detection and effective management of these complications are crucial for improving outcomes in stroke patients. This review highlights the emerging diagnostic markers and therapeutic targets including claudin, occludin, zonula occluden, s100β, albumin, MMP-9, MMP-2, MMP-12, IL-1β, TNF-α, IL-6, IFN-γ, TGF-β, IL-10, IL-4, IL-13, MCP-1/CCL2, CXCL2, CXCL8, CXCL12, CCL5, CX3CL1, ICAM-1, VCAM-1, P-selectin, E-selectin, PECAM-1/CD31, JAMs, HMGB1, vWF, VEGF, ROS, NAC, and AQP4. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Yao
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaowen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lintao Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Yu
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Cai
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Reng Ren
- Department of Neuroscience Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|