1
|
Mersal GAM, Hessien MM, Taleb MFA, Al-Juaid SS, Ibrahim MM. Solid–Liquid Phase Structural Studies of Bis(2-Picolyl)Amine-Based Zinc(II) Complexes as Functional Hydrolase Models: The Detoxification of Fenitrothion. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02105-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Maranha FG, dos Santos Silva GA, Bortoluzzi AJ, Nordlander E, Peralta RA, Neves A. A new heteropentanuclear complex containing the [Fe2IIIZn3II(μ-OH)3] structural motif as a model for purple acid phosphatases. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Polynuclear zinc(II) complexes of thiosemicarbazone: Synthesis, X-ray structure and biological evaluation. J Inorg Biochem 2019; 203:110908. [PMID: 31683125 DOI: 10.1016/j.jinorgbio.2019.110908] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 01/23/2023]
Abstract
Two new dimeric Zn(II) ([{ZnL1(DMSO2)}2]·DMSO (1), [{ZnL2Cl}2] (2)) and a novel tetrameric Zn(II) complex ([(Zn2L3)2(μ-OAc)2(μ3-O)2] (3)), where H2L1 = 4-(p-methoxyphenyl) thiosemicarbazone of o-hydroxynapthaldehyde, HL2 = 4-(p-methoxyphenyl)thiosemicarbazone of benzoyl pyridine and H2L3 = 4-(p-chlorophenyl)thiosemicarbazone of o-vanillin are reported. Ligands and their complexes were characterized by spectroscopic and single crystal X-ray diffraction techniques. In addition, the complexes exhibited good binding affinity towards HSA (1012 M-1), which is supported by their ability to quench the tryptophan fluorescence emission spectra of HSA. The complexes were also screened for their DNA binding propensity through UV-vis absorption titration, circular dichroism and fluorescence spectral studies. Results show that they effectively interact with CT-DNA through an intercalative mode of binding, with binding constants ranging from 103 to 104 M-1. Among the three complexes 1 has the highest binding affinity towards CT-DNA. Further, the phosphatase activity was evaluated using bis(2,4-dinitrophenyl)phosphate (BDNPP) as substrate, however, the complexes did not yield any measurable catalytic activity. Nevertheless the complexes showed significant cytotoxic potential against HeLa and HT-29 cancer cell lines that was assessed through MTT assay and DAPI staining. Remarkably, complex 1 showed better activity than cisplatin against HT-29 cell line.
Collapse
|
4
|
Singh A, Raj P, Singh A, Dubowski JJ, Kaur N, Singh N. Metal-Organocatalyst for Detoxification of Phosphorothioate Pesticides: Demonstration of Acetylcholine Esterase Activity. Inorg Chem 2019; 58:9773-9784. [PMID: 31318533 DOI: 10.1021/acs.inorgchem.9b00770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In recent years, transition metal complexes have been developed for catalytical degradation of a phosphate ester bond, particularly in RNA and DNA; however, less consideration has been given for development of complexes for the degradation of a phosphorothioate bond, as they are the foremost used pesticides in the environment and are toxic to human beings. In this context, we have developed copper complexes of benzimidazolium based ligands for catalytical degradation of a series of organophosphates (parathion, paraoxon, methyl-parathion) at ambient conditions. The copper complexes (assigned as N1-N3) were characterized using single X-ray crystallography which revealed that all three complexes are mononuclear and distorted square planner in geometry. Further, the solution state studies of the prepared complexes were carried out using UV-visible absorption, fluorescence spectroscopy, and cyclic voltametry. The complexes N1 and N2 have benzimidazolium ionic liquid as base attached with two 2-mercapto-benzimidazole pods, whereas complex N3 contains a nonionic ligand. The synthesized copper complexes were evaluated for their catalytic activity for degradation of organophosphates. It is interesting that the complex containing the ionic ligand efficiently degrades phosphorothioate pesticides, whereas complex N3 was not found to be appropriate for degradation due to a weaker conversion rate. The organophosphate degradation studies were monitored by recording absorbance spectra of parathion in the presence of catalyst, i.e., copper complexes with respect to time. The parathion was hydrolyzed into para-nitrophenol and diethyl thiophosphate. Moreover, to analyze the inhibition activity of the pesticides toward acetylcholine esterase enzyme in the presence of prepared metal complexes, Ellman's assay was performed and revealed that, within 20 min, the inhibition of acetylcholine esterase enzyme decreases by up to 13%.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry , Indian Institute of Technology Ropar , Punjab 140001 , India
| | - Pushap Raj
- Department of Chemistry , Indian Institute of Technology Ropar , Punjab 140001 , India
| | - Ajnesh Singh
- Department of Applied Sciences and Humanities , Jawaharlal Nehru Govt. Engineering College , Sundernagar , Mandi (H.P.) , 175018 , India
| | - Jan J Dubowski
- Laboratory for Quantum Semiconductors and Photo-based Biotechnology, Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering , Universite de Sherbrooke , 3000 Boulevard de l'Université , Sherbrooke , QC J1K 0A5 , Canada
| | - Navneet Kaur
- Department of Chemistry , Panjab University , Chandigarh , 160014 , India
| | - Narinder Singh
- Department of Chemistry , Indian Institute of Technology Ropar , Punjab 140001 , India
| |
Collapse
|
5
|
Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA. J Biol Inorg Chem 2019; 24:675-691. [DOI: 10.1007/s00775-019-01680-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
|
6
|
Erxleben A. Mechanistic Studies of Homo- and Heterodinuclear Zinc Phosphoesterase Mimics: What Has Been Learned? Front Chem 2019; 7:82. [PMID: 30847339 PMCID: PMC6393734 DOI: 10.3389/fchem.2019.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Phosphoesterases hydrolyze the phosphorus oxygen bond of phosphomono-, di- or triesters and are involved in various important biological processes. Carboxylate and/or hydroxido-bridged dizinc(II) sites are a widespread structural motif in this enzyme class. Much effort has been invested to unravel the mechanistic features that provide the enormous rate accelerations observed for enzymatic phosphate ester hydrolysis and much has been learned by using simple low-molecular-weight model systems for the biological dizinc(II) sites. This review summarizes the knowledge and mechanistic understanding of phosphoesterases that has been gained from biomimetic dizinc(II) complexes, showing the power as well as the limitations of model studies.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
7
|
Horn Jr. A, Englert D, Roberts AE, Comba P, Schenk G, Krenske EH, Gahan LR. Synthesis, Magnetic Properties, and Catalytic Properties of a Nickel(II)-Dependent Biomimetic of Metallohydrolases. Front Chem 2018; 6:441. [PMID: 30320072 PMCID: PMC6168013 DOI: 10.3389/fchem.2018.00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
A dinickel(II) complex of the ligand 1,3-bis(bis(pyridin-2-ylmethyl)amino)propan-2-ol (HL1) has been prepared and characterized to generate a functional model for nickel(II) phosphoesterase enzymes. The complex, [Ni2(L1)(μ-OAc)(H2O)2](ClO4)2·H2O, was characterized by microanalysis, X-ray crystallography, UV-visible, and IR absorption spectroscopy and solid state magnetic susceptibility measurements. Susceptibility studies show that the complex is antiferromagnetically coupled with the best fit parameters J = -27.4 cm-1, g = 2.29, D = 28.4 cm-1, comparable to corresponding values measured for the analogous dicobalt(II) complex [Co2(L1)(μ-OAc)](ClO4)2·0.5 H2O (J = -14.9 cm-1 and g = 2.16). Catalytic measurements with the diNi(II) complex using the substrate bis(2,4-dinitrophenyl)phosphate (BDNPP) demonstrated activity toward hydrolysis of the phosphoester substrate with K m ~10 mM, and k cat ~0.025 s-1. The combination of structural and catalytic studies suggests that the likely mechanism involves a nucleophilic attack on the substrate by a terminal nucleophilic hydroxido moiety.
Collapse
Affiliation(s)
- Adolfo Horn Jr.
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Daniel Englert
- Anorganisch-Chemisches Institut and Interdisciplinary Center of Scientific Computing, Universität Heidelberg, Heidelberg, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Asha E. Roberts
- Anorganisch-Chemisches Institut and Interdisciplinary Center of Scientific Computing, Universität Heidelberg, Heidelberg, Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary Center of Scientific Computing, Universität Heidelberg, Heidelberg, Germany
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Pathak C, Gangwar MK, Ghosh P. Homodinuclear [Fe(III)−Fe(III)] and [Zn(II)−Zn(II)] complexes of a binucleating [N4O3] symmetrical ligand with purple acid phosphatase (PAP) and zinc phosphoesterase like activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Pathak C, Gupta SK, Gangwar MK, Prakasham AP, Ghosh P. Modeling the Active Site of the Purple Acid Phosphatase Enzyme with Hetero-Dinuclear Mixed Valence M(II)-Fe(III) [M = Zn, Ni, Co, and Cu] Complexes Supported over a [N 6O] Unsymmetrical Ligand. ACS OMEGA 2017; 2:4737-4750. [PMID: 31457757 PMCID: PMC6641979 DOI: 10.1021/acsomega.7b00671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/08/2017] [Indexed: 05/13/2023]
Abstract
The active site of the purple acid phosphatase enzyme has been successfully modeled by a series of hetero-dinuclear M(II)-Fe(III) [M = Zn, Ni, Co, and Cu] type complexes of an unsymmetrical [N6O] ligand that contained a bridging phenoxide moiety and one imidazoyl and three pyridyl moieties as the terminal N-binding sites. In particular, the hetero-dinuclear complexes, {L[MII(μ-OAc)2FeIII]}(ClO4)2 [M = Zn (3a), Ni (3b), Co (4a), and Cu (4b)], were obtained directly from the phenoxy-bridged ligand (HL), namely 2-{[bis(2-methylpyridyl)amino]methyl}-6-{[((1-methylimidazol-2-yl)methyl)(2-pyridylmethyl)amino]methyl}-4-t-butylphenol (2), upon sequential addition of Fe(ClO4)3·XH2O and M(ClO4)2·6H2O (M = Zn and Ni) or M(OAc)2·XH2O (M = Co and Cu), in a low-to-moderate (ca. 32-53%) yield. The temperature-dependent magnetic susceptibility measurements indicated weak antiferromagnetic coupling interactions occurring between the two metal centers in their high-spin states. All of the 3(a-b) and 4(a-b) complexes successfully carried out the hydrolysis of the bis(2,4-dinitrophenyl)phosphate (2,4-BDNPP) substrate in a mixed CH3CN/H2O (v/v 1:1) medium in the pH range of 5.5-10.5 at room temperature, thereby mimicking the functional activity of the native enzyme. The spectrophotometric titration suggested a monoaquated and dihydroxo species of the type {L[(H2O)MII(μ-OH)FeIII(OH)]}2+ to be the catalytically active species for the phosphodiester hydrolysis reaction within the pH range of ca. 5.80-7.15. Last, the kinetic studies on the hydrolysis of the model substrate, 2,4-BDNPP, divulge a Michaelis-Menten-type behavior for all complexes.
Collapse
|
10
|
Silva GADS, Amorim AL, Souza BD, Gabriel P, Terenzi H, Nordlander E, Neves A, Peralta RA. Synthesis and characterization of FeIII(μ-OH)ZnII complexes: effects of a second coordination sphere and increase in the chelate ring size on the hydrolysis of a phosphate diester and DNA. Dalton Trans 2017; 46:11380-11394. [DOI: 10.1039/c7dt02035j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Effects of a second coordination sphere and of the chelate ring size in FeIII(μ-OH)ZnII complexes properties and catalysis.
Collapse
Affiliation(s)
| | - André Luiz Amorim
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Bernardo de Souza
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Philipe Gabriel
- Centro de Biologia Molecular Estrutural
- Departamento de Bioquímica
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural
- Departamento de Bioquímica
- Universidade Federal de Santa Catarina
- Florianópolis
- Brazil
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group
- Chemical Physics
- Center for Chemistry and Chemical Engineering
- Lund University
- SE-221 00 Lund
| | - Ademir Neves
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Rosely A. Peralta
- Departamento de Química
- Universidade Federal de Santa Catarina
- 88040-900 Florianópolis
- Brazil
| |
Collapse
|
11
|
Esteves LF, Rey NA, Dos Santos HF, Costa LAS. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex. Inorg Chem 2016; 55:2806-18. [DOI: 10.1021/acs.inorgchem.5b02604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucas F. Esteves
- NEQC (Núcleo de Estudos em Quı́mica
Computacional), Departamento de Quı́mica, Instituto de
Ciências Exatas (ICE), Universidade Federal de Juiz de Fora, Campus Universitário
Martelos, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Nicolás A. Rey
- Laboratório
de Síntese Orgânica e Quı́mica de Coordenação
Aplicada a Sistemas Biológicos (LABSO-BIO), Departamento de
Quı́mica, Centro Técnico Científico (CTC), PUC-Rio, 22453-900 Rio de Janeiro, Rio
de Janeiro, Brazil
| | - Hélio F. Dos Santos
- NEQC (Núcleo de Estudos em Quı́mica
Computacional), Departamento de Quı́mica, Instituto de
Ciências Exatas (ICE), Universidade Federal de Juiz de Fora, Campus Universitário
Martelos, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Luiz Antônio S. Costa
- NEQC (Núcleo de Estudos em Quı́mica
Computacional), Departamento de Quı́mica, Instituto de
Ciências Exatas (ICE), Universidade Federal de Juiz de Fora, Campus Universitário
Martelos, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
12
|
Mendes LL, Englert D, Fernandes C, Gahan LR, Schenk G, Horn A. Metallohydrolase biomimetics with catalytic and structural flexibility. Dalton Trans 2016; 45:18510-18521. [DOI: 10.1039/c6dt03200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phosphatase activity of zinc complexes containing six- and seven-dentate ligands was evaluated through kinetic and31P NMR studies.
Collapse
Affiliation(s)
- Luisa L. Mendes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Daniel Englert
- Anorganisch-Chemisches Institut
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Christiane Fernandes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Adolfo Horn
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| |
Collapse
|