1
|
Yang J, You ML, Liu S, Deng YF, Chang XY, Holmes SM, Zhang YZ. Cyanide-Bridged Rope-like Chains Based on Trigonal-Bipyramidal [Fe 2Cu 3] Subunits. Inorg Chem 2023; 62:17530-17536. [PMID: 37801447 DOI: 10.1021/acs.inorgchem.3c02986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Extending a selected cyanometalate block into a higher dimensional framework continues to present intriguing challenges in the fields of chemistry and material science. Here, we prepared two rope-like chain compounds of {[(Tp*Me)Fe(CN)3]2Cu2X2(L)}·sol (1, X = Cl, L = (MeCN)0.5(H2O/MeOH)0.5, sol = 2MeCN·1.5H2O; 2, X = Br, L = MeOH, sol = 2MeCN·0.75H2O; Tp*Me = tris(3, 4, 5-trimethylpyrazole)borate) in which the cyanide-bridged trigonal-bipyramidal [Fe2Cu3] subunits were linked with the adjacent ones via two vertex Cu(II) centers, providing a new cyanometallate chain archetype. Direct current magnetic study revealed the presence of ferromagnetic couplings between Fe(III) and Cu(II) ions and uniaxial anisotropy due to a favorable alignment of the anisotropic tricyanoiron(III) units. Moreover, compound 1 exhibits single-chain magnet behavior with an appreciable energy barrier of 72 K, while 2 behaves as a metamagnet, likely caused by the subtle changes in the interchain interactions.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Mao-Lin You
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Shihao Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Stephen M Holmes
- Department of Chemistry and Biochemistry and Centre for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri 63121, United States
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
2
|
|
3
|
de Souza MS, Reis SG, Stinghen D, Escobar LBL, Allão Cassaro RA, Poneti G, S Bortolot C, Marbey J, Hill S, Vaz MGF. High-Frequency EPR Studies of New 2p-3d Complexes Based on a Triazolyl-Substituted Nitronyl Nitroxide Radical: The Role of Exchange Anisotropy in a Cu-Radical System. Inorg Chem 2022; 61:12118-12128. [PMID: 35876616 DOI: 10.1021/acs.inorgchem.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the 1-(m-tolyl)-1H-1,2,3-triazole-4-(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) (TlTrzNIT) radical and metal β-diketonate complexes [M(hfac)2(H2O)2], where hfac is hexafluoroacetylacetonato, three new 2p-3d heterospin complexes were synthesized. Their structures were solved using single crystal X-ray diffraction data, and magnetic investigation was performed by DC and AC measurements and multifrequency EPR spectroscopy. Compounds 1 and 2 are isostructural complexes with molecular formula [M3(TlTrzNIT)2(hfac)6] (MII = Mn or Cu) while compound 3 is the mononuclear [Co(TlTrzNIT)(hfac)2] complex. In all complexes, the radical acts as a bidentate ligand through the oxygen atom of the nitroxide moiety and the nitrogen atom from the triazole group. Furthermore, in compounds 1 and 2, the TlTrzNIT is bridge-coordinated between two metal centers, leading to the formation of trinuclear complexes. The fitting of the static magnetic behavior reveals antiferromagnetic and ferromagnetic intramolecular interactions for complexes 1 and 2, respectively. The EPR spectra of 1 are well described by an isolated ferrimagnetic S = 13/2 (= 5/2 - 1/2 + 5/2 - 1/2 + 5/2) ground state with a biaxial zero-field splitting (ZFS) interaction characterized, respectively, by 2nd order axial and rhombic parameters, D and E, such that E/D is close to the maximum of 0.33. Meanwhile, EPR spectra for 2 are explained in terms of a ferromagnetic model with weakly anisotropic Cu-radical exchange interactions, giving rise to an isolated S = 5/2 (= 5 × 1/2) ground state with both an anisotropic g tensor and a weak ZFS interaction. Complex 2 represents one of only a few examples of Cu-radical moieties with measurable exchange anisotropy.
Collapse
Affiliation(s)
- Mateus S de Souza
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-150, Brazil
| | - Samira G Reis
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-150, Brazil
| | - Danilo Stinghen
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-150, Brazil
| | - Lívia B L Escobar
- Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24210-346, Brazil.,NHMFL, Florida State University, Tallahassee, Florida 32310, United States.,Departamento de Química, Pontifícia Universidade Católica, Gávea, Rio de Janeiro, RJ 22453-900, Brazil
| | - Rafael A Allão Cassaro
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Carolina S Bortolot
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-150, Brazil
| | - Jonathan Marbey
- NHMFL, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Stephen Hill
- NHMFL, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Maria G F Vaz
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-150, Brazil
| |
Collapse
|
4
|
Cheng SC, Chan SL, Phillips DL, Ko CC. Excited‐State Dynamics of Phosphorescent Trinuclear Re(I) Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Chi-Chiu Ko
- City University of Hong Kong Department of Chemistry Tat Chee Avenue NA Hong Kong HONG KONG
| |
Collapse
|
5
|
Liu Q, Yao NT, Sun HY, Hu JX, Meng YS, Liu T. Light actuated single-chain magnet with magnetic coercivity. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyanide-bridged {Fe2Co}-based coordination polymer was synthesized. It showed photo-induced slow relaxation of magnetization and a coercive field of 400 Oe.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Ji-Xiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Rath NP, Holmes SM. Structure-property studies of a new {FeIII2MnII} complex. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Yang J, Zhao XH, Deng YF, Zhang XY, Chang XY, Zheng Z, Zhang YZ. Azido-Cyanide Mixed-Bridged Fe III-Ni II Complexes. Inorg Chem 2020; 59:16215-16224. [PMID: 33105988 DOI: 10.1021/acs.inorgchem.0c01917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The successful introduction of azide ions as secondary bridges into the FeIII-NiII cyanide system afforded two clusters and one unique 4(3),2-ribbon chain: [(bpzpy)2Ni2(μ2-1,1-N3)2{(pzTp)Fe(CN)3}2]·3H2O [1; bpzpy = 2,6-bis(pyrazol-1-yl)pyridine, and pzTp = tetrakis(pyrazolyl)borate], [(L1)2Ni4(μ3-1,1,1-OCH3)2(μ2-1,1-N3)2(H2O)2{(Tp)Fe(CN)3}2]·2CH3OH·H2O [2; Tp = hydrotris(pyrazolyl)borate, and HL1 = 2,6-bis{(2-hydroxypropylimino)methyl}-4-methylphenol], and [(L2)2Ni3(μ2-1,1-N3)4{(pzTp)Fe(CN)3}2]n (3; L2 = 2-{[phenyl(pyridin-2-yl)methylene]amino}ethan-1-amine). Both 1 and 2 feature the centrosymmetric {FeIII-NiII2-FeIII} and {FeIII-NiII4-FeIII} rodlike structures in which the two peripheral [(TpR)Fe(CN)3]- anions act as monodentate ligands via one cyanide group to link the central azide-bridged [Ni2] and [Ni4] subunit, respectively, while 3 displays an extended structure of the double-zigzag (4,2-ribbon) chain in which the double end-on azide-bridged trinuclear [Ni3] subunits serve as the 4-connected nodes. Magnetic study revealed that intramolecular ferromagnetic coupling is dominated by the azide or cyanide bridges in all of the complexes. Remarkably, complex 1 behaves as a single-molecule magnet with an effective energy barrier of 16.5 cm-1 at zero dc field, while complex 3 exhibits metamagnetism with a hidden spin canting property below 12 K.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin-Hua Zhao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin-Yu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
8
|
Pyykkönen A, Feher R, Köhler FH, Vaara J. Paramagnetic Pyrazolylborate Complexes Tp 2M and Tp* 2M: 1H, 13C, 11B, and 14N NMR Spectra and First-Principles Studies of Chemical Shifts. Inorg Chem 2020; 59:9294-9307. [PMID: 32558559 DOI: 10.1021/acs.inorgchem.0c01176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The paramagnetic pyrazolylborates Tp2M and Tp*2M (M = Cu, Ni, Co, Fe, Mn, Cr, V) as well as [Tp2M]+ and [Tp*2M]+ (M = Fe, Cr, V) have been synthesized and their NMR spectra recorded. The 1H signal shift ranges vary from ∼30 ppm (Cu(II) and V(III)) to ∼220 ppm (Co(II)), and the 13C signal shift ranges from ∼180 ppm (Fe(III)) to ∼1150 ppm (Cr(II)). The 11B and 14N shifts are ∼360 and ∼730 ppm, respectively. Both negative and positive shifts have been observed for all nuclei. The narrow NMR signals of the Co(II), Fe(II), Fe(III), and V(III) derivatives provide resolved 13C,1H couplings. All chemical shifts have been calculated from first-principles on a modern version of Kurland-McGarvey theory which includes optimized structures, zero-field splitting, and g tensors, as well as signal shift contributions. Temperature dependence in the Fe(II) spin-crossover complex results from the equilibrium of the ground singlet and the excited quintet. We illustrate both the assignment and analysis capabilities, as well as the shortcomings of the current computational methodology.
Collapse
Affiliation(s)
- Ari Pyykkönen
- NMR Research Unit, University of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
| | - Robert Feher
- Department Chemie, Technische Universität München, D-85748 Garching, Germany
| | - Frank H Köhler
- Department Chemie, Technische Universität München, D-85748 Garching, Germany
| | - Juha Vaara
- NMR Research Unit, University of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
| |
Collapse
|
9
|
Zhang YZ, Rath NP, Cain JM, Meisel MW, Holmes SM. Structure-property studies of a new one-dimensional Fe(III)/Mn(II) chain. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Brown A, Saber M, Van den Heuvel W, Schulte K, Soncini A, Dunbar KR. Titanium(III) Member of the Family of Trigonal Building Blocks with Scorpionate and Cyanide Ligands. Inorg Chem 2017; 56:1031-1035. [DOI: 10.1021/acs.inorgchem.6b02643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Brown
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mohamed Saber
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Kelsey Schulte
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Alessandro Soncini
- School of
Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|