1
|
Wang KY, Liu Y, Zhu JY, Cheng L, Wang C. M–Sn–Q (M = Zn, Cd; Q = S, Se) Compounds Templated by (Alkyl)ammonium Species: Synthesis, Crystal Structure, and Sr 2+ Adsorption Property. Inorg Chem 2022; 61:19106-19118. [DOI: 10.1021/acs.inorgchem.2c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
- National Engineering Research Center for Optoelectronic Crystalline Materials, Fuzhou, Fujian350002, P. R. China
| | - Yang Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| | - Jia-Ying Zhu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| | - Lin Cheng
- College of Chemistry, Tianjin Normal University, Tianjin300387, P. R. China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin300384, China
| |
Collapse
|
2
|
Bamba IF, Falaise C, Marrot J, Gbassi GK, Atheba P, Guillot R, Haouas M, Cadot E. Revisiting the Three Vanadium Sandwich-Type Polyoxometalates: Structures, Solution Behavior, and Redox Properties. Inorg Chem 2022; 61:8309-8319. [PMID: 35585658 DOI: 10.1021/acs.inorgchem.2c00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well known that the trivacant anions α-B-[XW9O33]9- react with vanadyl ions to give the sandwich-type polyoxometalates [(VIVO)3(XW9O33)2]12- with X = AsIII or SbIII. Nevertheless, the oxidized derivatives have been obtained selectively by electrochemical oxidation from the fully reduced derivatives [(VIVO)3(XW9O33)2]12- allowing full characterization both in solution using UV-vis and multinuclear (17O, 51V, and 183W) NMR spectroscopies and in the solid state by single-crystal X-ray diffraction. Structural analysis of the oxidized [(VVO)3(XW9O33)2]9- polyanions is consistent with the idealized D3h symmetry, while solution studies reveal a fair hydrolytic stability in a wide pH range from 0 to 6. Besides, the D3h polyanions either as reduced or oxidized forms [(VO)3(AsW9O33)2]9/12- have been identified as the thermodynamic product that results from the conversion of the C2v polyanion [(H2O)(VO)3(AsW9O33)2]9/12- through moderate heating. Conversely, the SbIII-containing derivative gives exclusively the D3h polyanion, probably either due to the extended lone pair of the trigonal SbIII heterogroup that prevents the formation of the C2v arrangement or the lability of the oxo-metalate bonds that favor chemical exchange. The electrochemical studies of sandwich-type polyoxometalates revealed that each {V═O} group gives rise to a one-electron transfer process. At last, the redox properties appear strongly altered in the 0.3-5 pH range, consistent with proton-coupled electron transfers.
Collapse
Affiliation(s)
- Ibrahima Fa Bamba
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78000 Versailles, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78000 Versailles, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78000 Versailles, France
| | - Gildas K Gbassi
- UFR Sciences Pharmaceutiques et Biologiques (UFR SPB), Université Félix Houphouët Boigny (UFHB), BP V34 Abidjan, Ivory Coast
| | - Patrick Atheba
- UFR Sciences des Structures de la Matière et Technologie (UFR SSMT), Université Félix Houphouët Boigny (UFHB), BP V34 Abidjan, Ivory Coast
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris Sud, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
3
|
Search for Structurally Resembled Mn/Ca Cubane Core of the Oxygen Evolving Complex of Photosystem II Yielded MnIV, MnIII3MnII and MnIII2CaII2 Entities: Structure and Magnetism. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Ge X, Fu W, Wang Y, Wang L, Yao F. Removal of nitrate nitrogen from water by phosphotungstate-supported TiO 2 photocatalytic method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40475-40482. [PMID: 32666458 DOI: 10.1007/s11356-020-09947-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Nitrate nitrogen in water, especially in groundwater, is a major problem in the current drinking water environment. In this study, copper- and nickel-modified phosphotungstate catalysts supported on TiO2 were prepared by the sol-gel solvothermal method, and photocatalytic reduction by phosphotungstate was used to remove nitrate nitrogen in water under ultraviolet irradiation. The maximum removal rate was 59.60% with 0.8 g/L Cu-H3PW12O40/TiO2, 90 mg/L nitrate nitrogen, and 60 min reaction time. For Ni-H3PW12O40/TiO2, the maximum removal rate of nitrate nitrogen was 54.58%, achieved with a catalyst concentration of 0.8 g/L, nitrate nitrogen concentration of 120 mg/L, and reaction time of 30 min. Both catalysts could remove nitrate nitrogen from water under the condition of photocatalysis.
Collapse
Affiliation(s)
- Xiaohong Ge
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Ecology and Environmental Protection, Linyi Vocational University of Science and Technology, Linyi, 276000, People's Republic of China
| | - Weizhang Fu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Yujun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Lingsheng Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Fanfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| |
Collapse
|
5
|
Goura J, Choudhari M, Nisar T, Balster T, Bindra JK, Kinyon J, Ali B, McCormac T, Dalal NS, Wagner V, Kortz U. Tetra-MnIII-Containing 30-Tungsto-4-phosphate, [MnIII4(H2O)2(P2W15O56)2]12–: Synthesis, Structure, XPS, Magnetism, and Electrochemical Study. Inorg Chem 2020; 59:13034-13041. [DOI: 10.1021/acs.inorgchem.0c01231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joydeb Goura
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Manjiri Choudhari
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Talha Nisar
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Torsten Balster
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Jasleen K. Bindra
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Jared Kinyon
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Bushra Ali
- Dundalk Institute of Technology, Dundalk, County Louth, A91 K584, Ireland
| | - Timothy McCormac
- Dundalk Institute of Technology, Dundalk, County Louth, A91 K584, Ireland
| | - Naresh S. Dalal
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Veit Wagner
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
6
|
Zhang S, Wang KY, Cheng L, Wang C. Preparation and characterization of monocobalt-substituted tungstosilicate/aniline/graphene nanocomposite. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Ueda T. Electrochemistry of Polyoxometalates: From Fundamental Aspects to Applications. ChemElectroChem 2018. [DOI: 10.1002/celc.201701170] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tadaharu Ueda
- Department of Marine Resources Science, Faculty of Agriculture and Marine Science; Kochi University; Monobe-Otsu 200 Nankoku 783-8502 Japan
- Center for Advanced Marine Core Research; Kochi University; Monobe-Otsu 200 Nankoku 783-8502 Japan
| |
Collapse
|
8
|
Wang Y, Liu X, Xu W, Yue Y, Li B, Wu L. Triol-Ligand Modification and Structural Transformation of Anderson–Evans Oxomolybdates via Modulating Oxidation State of Co-Heteroatom. Inorg Chem 2017; 56:7019-7028. [DOI: 10.1021/acs.inorgchem.7b00614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Wang
- State Key Laboratory of Supramolecular Structure and Materials, ‡Institute of Theoretical Chemistry, and §State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaoting Liu
- State Key Laboratory of Supramolecular Structure and Materials, ‡Institute of Theoretical Chemistry, and §State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Xu
- State Key Laboratory of Supramolecular Structure and Materials, ‡Institute of Theoretical Chemistry, and §State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ying Yue
- State Key Laboratory of Supramolecular Structure and Materials, ‡Institute of Theoretical Chemistry, and §State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, ‡Institute of Theoretical Chemistry, and §State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, ‡Institute of Theoretical Chemistry, and §State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|