1
|
Wang Q, Li M, Xi M, Zhao M, Wang X, Chen X, Ding L. Recovery of Ag(I) from Wastewater by Adsorption: Status and Challenges. TOXICS 2024; 12:351. [PMID: 38787130 PMCID: PMC11125793 DOI: 10.3390/toxics12050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Untreated or inadequately treated silver-containing wastewater may pose adverse effects on hu-man health and the ecological environment. Currently, significant progress has been made in the treatment of Ag(I) in wastewater using adsorption methods, with adsorbents playing a pivotal role in this process. This paper provides a systematic review of various adsorbents for the recovery and treatment of Ag(I) in wastewater, including MOFs, COFs, transition metal sulfides, metal oxides, biomass materials, and other polymeric materials. The adsorption mechanisms of these materials for Ag(I) are elaborated upon, along with the challenges currently faced. Furthermore, insights into optimizing adsorbents and developing novel adsorbents are proposed in this study.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengling Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Meng Xi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengyuan Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaotong Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoyu Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
2
|
Peng Q, Zhao H, Chen G, Yang Q, Cao X, Xiong S, Xiao A, Li G, Liu B, Liu Q. Synthesis of novel magnetic pitch-based hypercrosslinked polymers as adsorbents for effective recovery of Ag + with high selectivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117763. [PMID: 37031597 DOI: 10.1016/j.jenvman.2023.117763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Silver is an important precious metal with superior ductility, electrical and thermal conductivity, photosensitivity, and antibacterial properties. However, without proper recycling and treatment, silver emissions may pose a threat to the human health and subsistence environment due to their toxicity. Therefore, it is environmentally and economically important to recover Ag from waste electronic equipment and anode slime. Herein, carboxyl functionalized modified magnetic nanoparticles (Fe3O4@3-phenylglutaricacid nanoparticles) were designed and prepared to obtain the low-cost magnetic pitch-based HCP adsorbents (MPHCP and P-MPHCP). The novelty of present work is that superior adsorption capacity and magnetic responsiveness of adsorbent can be obtained by a simple one-step Friedel-Crafts reaction with very low-cost raw material. The maximum Ag+ adsorption capacity of MPHCP and P-MPHCP were 321 and 353 mg/g, respectively. The adsorption was completed within a short duration of 15 min for MPHCP and P-MPHCP at an initial Ag+ concentration of 100 mg/L. Moreover, the most selective is P-MPHCP wherein Ag+ is α = 61 times more selective than Pb2+ at a concentration of 100 mg/L.The adsorption capacity of MPHCP and P-MPHCP towards Ag+ still maintains above 89% after ten cycles of adsorption-desorption. This study not only provides new guidance for the development of porous polymeric adsorbents but also provides technical feasibility for the field of recovery and reutilization of precious metals, which has a very extensive practical application prospect.
Collapse
Affiliation(s)
- Qi Peng
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Hongwei Zhao
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Guang Chen
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Qilin Yang
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinxiu Cao
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shaohui Xiong
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Anguo Xiao
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde, 415000, China.
| | - Gen Li
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bo Liu
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan University of Arts and Science, Changde, 415000, China
| | - Qingquan Liu
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
3
|
Attia RG, Khalil MMH, Hussein MA, Fattah HMA, Rizk SA, Ma'moun SAM. Cinnamon Oil Encapsulated with Silica Nanoparticles: Chemical Characterization and Evaluation of Insecticidal Activity Against the Rice Moth, Corcyra cephalonica. NEOTROPICAL ENTOMOLOGY 2023; 52:500-511. [PMID: 36913124 PMCID: PMC10182127 DOI: 10.1007/s13744-023-01037-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/23/2023] [Indexed: 05/13/2023]
Abstract
Cinnamon (Cinnamomum zeylanicum Blume) essential oil has vast potential as an antimicrobial but is limited by its volatility and rapid degradation. To decrease its volatility and prolong the efficacy of the biocide, cinnamon essential oil was encapsulated into mesoporous silica nanoparticles (MSNs). The characterization of MSNs and cinnamon oil encapsulated with silica nanoparticles (CESNs) was estimated. Additionally, their insecticidal activity against the rice moth Corcyra cephalonica (Stainton) larvae was evaluated. The MSN surface area decreased from 893.6 to 720 m2 g-1 and the pore volume also decreased from 0.824 to 0.7275 cc/g after loading with cinnamon oil. X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and N2 sorption by Brunauer-Emmett-Teller (BET) confirmed the successful formation and evolution of the synthesized MSNs and CESN structures. The surface characteristics of MSNs and CESNs were analyzed by scanning and transmission electron microscopy. Compared with the sub-lethal activity values, the order of toxicity after 6 days of exposure was MSNs ˃ CESN ˃ cinnamon oil ˃ silica gel ˃ peppermint oil. The efficacy of CESNs gradually increases its toxicity more than MSN after the 9th day of exposure.
Collapse
Affiliation(s)
- Radwa G Attia
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mostafa M H Khalil
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed A Hussein
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hoda M Abdel Fattah
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Salwa A Rizk
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Shireen A M Ma'moun
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. Shireen_ma'
| |
Collapse
|
4
|
Rapid and selective recovery of Ag(I) from simulative electroplating effluents by sulfydryl-rich covalent organic framework (COF-SH) with high adsorption capacity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Hussein MA, Alamry KA, Alsulami QA, Elshehy EA, El-Said WA. Design and synthesis of a combined meso-adsorbent/chemo-sensor for extraction and detection of silver ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120938. [PMID: 35124483 DOI: 10.1016/j.saa.2022.120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
We synthesized a new pH-dependent meso-captor/sensor for the visual monitoring and selective sequestering of Ag(I) ions from wastewater. The SBA-16 microspheres were successfully synthesized via a direct hydrothermal treatment through surfactant-assisted cooperative self-assembly. The meso-captor/sensor was designed via the direct immobilization of the chromogenic Acid Blue 90 (AB90) chelate into cubical large, open mesoporous SBA-16 carriers and investigate of its ability to detect and retain silver ions from aqueous solutions. Results show that the synthesized SBA-16 microspheres were retained after modification and the AB90 functional groups were immobilized hierarchically inside the mesopore channels. This was evidenced by the N2 adsorption, X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM), High-Resolution Transmission Electron Microscope (HR-TEM), and elemental analyses. Batch adsorption experiments were carried out and the effects of various parameters on Ag(I) ions removal and detection were determined. The optimum adsorption/detection of Ag(I) ions were recorded at a pH of 6.2 within 30 min with color change from a brilliant blue to a pale blue-gray. The spectral response for [SBA-16@AB90 → Ag(I)] complex showed a maximum reflectance at λmax = 385 nm within 2.5 min response time (tR); the LOD was close to 3.87 µg/L while the LOQ approached 12.83 µg/L, this was attributed to the concentration range at which a linear signal has been observed against Ag(I) analyte concentration (i.e., 5 to 1000 µg/L) at pH 6.2 with standard deviation (SD) of 0.077 (RSD% = 9.5 at n = 8).
Collapse
Affiliation(s)
- Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Qana A Alsulami
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Emad A Elshehy
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt.
| | - Waleed A El-Said
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; College of Science, Department of Chemistry, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Brewer A, Florek J, Kleitz F. A perspective on developing solid-phase extraction technologies for industrial-scale critical materials recovery. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:2752-2765. [PMID: 35444492 PMCID: PMC8979348 DOI: 10.1039/d2gc00347c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 05/13/2023]
Abstract
Critical materials (CMs) are a group of elements that have been determined to be important for the modern economy, but which may face current or potential supply limitations. Some examples of metals that have received the CM designation include the rare earth elements, indium, gallium, and lithium. The last decade has seen a major push for the development of new and improved technologies for the recovery and purification of CMs from various traditional and non-traditional resources in an effort to diversify supply. Solid-phase extraction (SPE) is one broad category of these experimental extraction technologies. SPE involves the application of a solid material to preferentially retain in the solid phase one or more specific components of an aqueous solution, leaving the other components behind in the aqueous phase. A wide range of different sorbents has been used for SPE, and many offer significant potential advantages, including low cost, low environmental impact, and high customizability. Hierarchically porous silica monoliths are one example of a cutting-edge sorbent that provides a durable, high surface area foundation that can be functionalized with a variety of targeted ligands for the selective extraction of specific CMs. Despite impressive recent advances in SPE, there remain areas for improvement that are common across the discipline. To demonstrate the practical viability of these innovative CM recovery systems, future SPE studies would benefit from devoting additional focus to the scalability of their material, as well as from focusing on real-world feedstocks and conducting techno-economic analyses and environmental impact studies.
Collapse
Affiliation(s)
- Aaron Brewer
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna Währinger Strasse 42 1090 Vienna Austria
| | - Justyna Florek
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna Währinger Strasse 42 1090 Vienna Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna Währinger Strasse 42 1090 Vienna Austria
| |
Collapse
|
7
|
Yuksekdag A, Kose-Mutlu B, Zeytuncu-Gokoglu B, Kumral M, Wiesner MR, Koyuncu I. Process optimization for acidic leaching of rare earth elements (REE) from waste electrical and electronic equipment (WEEE). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7772-7781. [PMID: 34476712 DOI: 10.1007/s11356-021-16207-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
E-waste (EW) from discarded electrical and electronic devices is a potential source of rare earth elements (REEs) that might be recovered from urban and industrial wastes. REEs are essential raw materials for emerging and high technologies. China currently dominates global REE production with a proportion of 97%. To increase the independence of REE supply and eliminate the environmental impacts related to REE mining, methods for an efficient REE recovery from secondary sources like EW are needed. In this work, we examine improvements in pre-treatment and acidic leaching processes to recover REEs and other valuable metals. EW was crushed and ground prior to the sieving. The materials obtained were then subjected to acid leaching. The parameters used to optimize the conditions for leaching were as follows: acid type (HCl, HNO3, and aqua regia), particle size, and waste-to-acid ratio. The maximum leaching efficiency was obtained from the ground, sieved, and undersized part of e-waste by using HCl with a W:A of 12.5 mg/mL. The total REE concentration was 435 mg/kg. Several treatment scenarios are identified with promise for improving REE recovery at full scale in EW recovery plants and thereby advancing goals for a sustainable, circular economy.
Collapse
Affiliation(s)
- Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Borte Kose-Mutlu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
- Molecular Biology and Genetics Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Bihter Zeytuncu-Gokoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
- Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mustafa Kumral
- Geological Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mark R Wiesner
- Civil and Environmental Engineering Department, Duke University, Durham, NC, 27708, USA
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
8
|
Tolan DA, Elshehy EA, El-Said WA, Taketsugu T, Yoshizawa K, El-Nahas AM, Kamali AR, Abdelkader AM. Cubically cage-shaped mesoporous ordered silica for simultaneous visual detection and removal of uranium ions from contaminated seawater. Mikrochim Acta 2021; 189:3. [PMID: 34855016 DOI: 10.1007/s00604-021-05083-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
A dual-function organic-inorganic mesoporous structure is reported for naked-eye detection and removal of uranyl ions from an aqueous environment. The mesoporous sensor/adsorbent is fabricated via direct template synthesis of highly ordered silica monolith (HOM) starting from a quaternary microemulsion liquid crystalline phase. The produced HOM is subjected to further modifications through growing an organic probe, omega chrome black blue G (OCBBG), in the cavities and on the outer surface of the silica structure. The spectral response for [HOM-OCBBG → U(VI)] complex shows a maximum reflectance at λmax = 548 nm within 1 min response time (tR); the LOD is close to 9.1 μg/L while the LOQ approaches 30.4 μg/L, and this corresponds to the range of concentration where the signal is linear against U(VI) concentration (i.e., 5-1000 μg/L) at pH 3.4 with standard deviation (SD) of 0.079 (RSD% = 11.7 at n = 10). Experiments and DFT calculations indicate the existence of strong binding energy between the organic probe and uranyl ions forming a complex with blue color that can be detected by naked eyes even at low uranium concentrations. With regard to the radioactive remediation, the new mesoporous sensor/captor is able to reach a maximum capacity of 95 mg/g within a few minutes of the sorption process. The synthesized material can be regenerated using simple leaching and re-used several times without a significant decrease in capacity.
Collapse
Affiliation(s)
- Dina A Tolan
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia.,Chemistry Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | | | - Waleed A El-Said
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.,Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ahmed M El-Nahas
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Amr M Abdelkader
- Department of Engineering, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, UK.
| |
Collapse
|
9
|
Tarasi S, Ramazani A, Morsali A, Hu ML. Highly Sensitive Colorimetric Naked-Eye Detection of Hg II Using a Sacrificial Metal-Organic Framework. Inorg Chem 2021; 60:13588-13595. [PMID: 34435495 DOI: 10.1021/acs.inorgchem.1c01894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study has developed a specific, easy, and novel approach to designing a sacrificial metal-organic framework (MOF) that can detect and measure the amount of Hg2+ in aqueous and nonaqueous solutions using the naked eye. The functionalized [Zn(oba)(RL3)0.5]n·1.5DMF (TMU-59) provides the ability of simple visual assessment or colorimetric readout without sophisticated analytical equipment. Because of the special interaction with Hg2+, degradation of the structure of this unique MOF causes the solution to change color from colorless to a pink that is easily recognizable to the naked eye. The presence of a methyl group plays a major role in naked-eye detection by a qualitative sensor. Furthermore, this qualitative sensor data for the production of a simple, instant, and portable red, green, and blue (RGB)-based quantitative sensor were used to determine the concentration of Hg2+ in different specimens. As a turn-off fluorescence sensor, this unique structure is also capable of detecting Hg2+ at very low concentrations (the limit of detection is 0.16 ppb). To the best of our knowledge, TMU-59 is the first MOF-based naked-eye sensor that can successfully and specifically display the presence of Hg2+ through a major color change.
Collapse
Affiliation(s)
- Somayeh Tarasi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Agronomy, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Animal Science, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
10
|
Zhou S, Xu W, Zhang P, Tang K. Highly efficient adsorption of Ag(I) from aqueous solution by Zn‐NDC metal–organic framework. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shuxian Zhou
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Panliang Zhang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| |
Collapse
|
11
|
Gomaa H, Shenashen MA, Elbaz A, Kawada S, Seaf El-Nasr TA, Cheira MF, Eid AI, El-Safty SA. Inorganic-organic mesoporous hybrid segregators for selective and sensitive extraction of precious elements from urban mining. J Colloid Interface Sci 2021; 604:61-79. [PMID: 34265693 DOI: 10.1016/j.jcis.2021.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022]
Abstract
This study aimed to develop a highly selective extraction protocol for gold (AuIII) ions from electronic urban waste (EUW) using simple, low-cost Inorganic-organic mesoporous hybrid segregators. The unique features of mesoporous hybrid segregator architectures are of particular to ensure effective adsorption system in terms of selective and sensitive recovery of AuIII ions from EUW. The segregator platform featured 3D micrometric, mesocage double-serrated plant-leaf-like γ-Al2O3 sheets with hierarchy surfaces containing tri-modal mesopores interiorly and uniformly arranged toothed edges of ~20-40 and ~15 nm groove width and depth at the exterior surfaces, respectively. Rational incorporation of actively organic chelates into hierarchical γ-Al2O3 sheet platforms leads to the production of a couple of selective segregators 1 and 2 (namely, SC1 and SC2) for AuIII ions at specific conditions by applying batch and fixed-bed columnar techniques. The mesocage SC segregators offer a selective extraction approach of AuIII ions from mixed element contents released from a computer motherboard (CMB). Our finding indicated that the textural and hierarchal features of the mesocage SC segregators played key roles in the selective adsorption/recovery of AuIII ions at pH 2-2.5 with high capacity (136-141 mg/g range) and effective reusability ≫10 consecutive cycles. In general, the developed SCs could be utilized as a real extractor of AuIII recovery from spent CMBs.
Collapse
Affiliation(s)
- Hassanien Gomaa
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305- 6 0047, Japan; Chemistry Department, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305- 6 0047, Japan; Petrochemical Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt
| | - Amro Elbaz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Egypt
| | - Satoshi Kawada
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305- 6 0047, Japan
| | - Tarek A Seaf El-Nasr
- Chemistry Department, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt
| | - Mohamed F Cheira
- Nuclear Materials Authority, P.O. Box 530 El Maadi, Cairo, Egypt
| | - Alaa I Eid
- Advanced Materials Division, Central Metallurgical R&D Institute, Helwan, Egypt
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki 305- 6 0047, Japan.
| |
Collapse
|
12
|
Abdelmageed N, El‐Said WA, Younes AA, Atrees MS, Farag AB, Elshehy EA, Abdelkader AM. Facile synthesis of
silica‐polymer
monoliths using nonionic triblock copolymer surfactant for efficient removal of radioactive pollutants from contaminated seawater. J Appl Polym Sci 2021. [DOI: 10.1002/app.51263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nada Abdelmageed
- Department of Chemistry, Faculty of Science Helwan University Cairo Egypt
| | - Waleed A. El‐Said
- Department of Chemistry, Faculty of Science Assiut University Assiut Egypt
- University of Jeddah, College of Science Department of Chemistry Jeddah Saudi Arabia
| | - Ahmed A. Younes
- Department of Chemistry, Faculty of Science Helwan University Cairo Egypt
| | - Mohamed S. Atrees
- Materials of Reactors Department Nuclear Materials Authority El‐Maad Cairo Egypt
| | | | - Emad A. Elshehy
- Materials of Reactors Department Nuclear Materials Authority El‐Maad Cairo Egypt
| | - Amr M. Abdelkader
- Department of Engineering Bournemouth University, Talbot Campus, Fern Barrow Poole UK
| |
Collapse
|
13
|
|
14
|
Hussein MA, Alamry KA, El Shishtawy RM, Elshehy EA, El-Said WA. Nanoporous colorant sensors and captors for simultaneous recognition and recovery of gold from E-wastes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 116:166-178. [PMID: 32799098 DOI: 10.1016/j.wasman.2020.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Platinum group metals have gained significant interest due to their unique characteristics, which make them the main constituents in advanced applications. In this work, we introduce new pH-dependent optical mesocaptors for the colorimetric monitoring and separation of Au(III) from E-waste leach liquors without a preconcentration process. The mesoporous silica nanospheres are fabricated via simple, reproducible, and low-cost procedures. The optical mesocaptor is designed via indirect immobilization of thiazole yellow G (TYG) and amacid yellow M (AYM) chromogenic probes onto mesoporous nanostructured scaffolds. The silanol groups in the mesopores of silica surface robustly anchored dilauryl dimethyl ammonium bromide (DDAB) linker to induce the interactions with the TYG and AYM chelates, thereby leading to the fashioning of a stable optical mesocaptors without releasing of the chelates throughout adsorption and sensing assays. The finding provides evidence of the capability of the synthesized decorated new nanostructured sensor shows excellent sensitivity toward Au(III) with a limit of detection (LOD) as low as 1.16 µg L-1. Furthermore, the new sensors were able to selectively detect Au(III) in solution with multi ions components.
Collapse
Affiliation(s)
- Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Reda M El Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | | | - Waleed A El-Said
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; University of Jeddah, College of Science, Department of Chemistry, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Rezk MM, Dhmees AS, Abd El-Magied M, Manaa ESA, El-Gendy HS. The influence of cobalt manganese ferrite nanoparticles (Co 0.5Mn 0.5Fe 2O 4) on reduction of hazardous effects of vanadate in adult rats. Toxicol Res (Camb) 2020; 9:81-90. [PMID: 32440339 PMCID: PMC7233316 DOI: 10.1093/toxres/tfaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 11/14/2022] Open
Abstract
Effect of cobalt manganese ferrite nanoparticles (M-NPs) (Co0.5Mn0.5Fe2O4) on vanadium hazards was assessment in the present study. Four groups of adult male albino rats [control group and three variably treated groups with ammonium metavanadate accompanied with or without cobalt M-NPs] were studied. The oral administration of ammonium metavanadate (Am.V) (20 mg/kg b.wt.) demonstrated the facility of vanadium to distribute and accumulate in the distinctive body organs and ordered as kidney > liver > lung > brain > spleen. Also, Am.V administration induce a significant disturbance in many physiological parameters (RBS, cholesterol, triglyceride, aspartate transaminase, alanine transaminase, Alb., bilirubin, Alk.Ph., urea, creat., Hb%, red blood cell count and packed cell volume) which might be expected to the liberation of free radicals according to the vanadium intoxication or its ability to disturb many body metabolisms. On the other hand, the intraperitoneal administration of 5% M-NPs in parallel with Am.V orally administration showed the ability of M-NPs to reduce Am.V dangerous impacts, which might be resulted from the essentiality of M-NPs metals to the body metabolism and to its free radicals scavenging properties. So, M-NPs could reduce Am.V hazardous effects.
Collapse
Affiliation(s)
- Mohamed M Rezk
- Isotopes Department, Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | - Abdelghaffar S Dhmees
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, 11727, Cairo, Egypt
| | - Mahmoud O Abd El-Magied
- Isotopes Department, Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | - El-Sayed A Manaa
- Isotopes Department, Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | - Hassan S El-Gendy
- Isotopes Department, Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| |
Collapse
|
16
|
Fissaha HT, Nisola GM, Burnea FK, Lee JY, Koo S, Lee SP, Hern K, Chung WJ. Synthesis and application of novel hydroxylated thia-crown ethers as composite ionophores for selective recovery of Ag+ from aqueous sources. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Yousef LA, Bakry AR, Abd El-Magied MO. Uranium(VI) recovery from its leach liquor using zirconium molybdophosphate composite: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06871-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Thorium ions recovery using activated carbon modified with triphenyl phosphine oxide: kinetic and equilibrium studies. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
19
|
Wang J, Huyan Y, Yang Z, Zhang H, Zhang A, Kou X, Zhang Q, Zhang B. Preparation of surface protein imprinted thermosensitive polymer monolithic column and its specific adsorption for BSA. Talanta 2019; 200:526-536. [DOI: 10.1016/j.talanta.2019.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 11/12/2022]
|
20
|
|
21
|
El-Magied MOA, Dhmees AS, Abd El-Hamid AAM, Eldesouky EM. Uranium extraction by sulfonated mesoporous silica derived from blast furnace slag. JOURNAL OF NUCLEAR MATERIALS 2018; 509:295-304. [DOI: 10.1016/j.jnucmat.2018.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
El-Sewify IM, Shenashen MA, Shahat A, Selim MM, Khalil MM, El-Safty SA. Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors. Microchem J 2018. [DOI: 10.1016/j.microc.2018.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Fabrication of Silica Microspheres (HB/A@SI-MNS) for Hafnium and Zirconium Recovery from Zirconyl Leach Liquor. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2020014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
El-Sewify IM, Shenashen MA, Shahat A, Yamaguchi H, Selim MM, Khalil MM, El-Safty SA. Ratiometric Fluorescent Chemosensor for Zn2+
Ions in Environmental Samples Using Supermicroporous Organic-Inorganic Structures as Potential Platforms. ChemistrySelect 2017. [DOI: 10.1002/slct.201702283] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Islam M. El-Sewify
- National Institute for Materials Science (NIMS) 1-2-1 Sengen; Tsukuba-shi, Ibaraki-ken 305-0047 Japan
- Department of Chemistry, Faculty of Science; Ain Shams University, Abbassia; 11566 Cairo Egypt
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS) 1-2-1 Sengen; Tsukuba-shi, Ibaraki-ken 305-0047 Japan
| | - Ahmed Shahat
- Department of Chemistry, Faculty of Science; Suez University; Suez Egypt
| | - Hitoshi Yamaguchi
- National Institute for Materials Science (NIMS) 1-2-1 Sengen; Tsukuba-shi, Ibaraki-ken 305-0047 Japan
| | - Mahmoud M. Selim
- Department of Mathematics, Al-Aflaj College of Science and Human Studies; Prince Sattam Bin Abdulaziz University; Al-Aflaj 710-11912 Saudi Arabia
| | - Mostafa M.H. Khalil
- Department of Chemistry, Faculty of Science; Ain Shams University, Abbassia; 11566 Cairo Egypt
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS) 1-2-1 Sengen; Tsukuba-shi, Ibaraki-ken 305-0047 Japan
- Faculty of Engineering and Advanced and Manufacturing; University of Sunderland; Sunderland, UK
| |
Collapse
|