1
|
Taseska T, Yu W, Wilsey MK, Cox CP, Meng Z, Ngarnim SS, Müller AM. Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Top Catal 2023; 66:338-374. [PMID: 37025115 PMCID: PMC10007685 DOI: 10.1007/s11244-023-01799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
AbstractWe analyzed the enormous scale of global human needs, their carbon footprint, and how they are connected to energy availability. We established that most challenges related to resource security and sustainability can be solved by providing distributed, affordable, and clean energy. Catalyzed chemical transformations powered by renewable electricity are emerging successor technologies that have the potential to replace fossil fuels without sacrificing the wellbeing of humans. We highlighted the technical, economic, and societal advantages and drawbacks of short- to medium-term decarbonization solutions to gauge their practicability, economic feasibility, and likelihood for widespread acceptance on a global scale. We detailed catalysis solutions that enhance sustainability, along with strategies for catalyst and process development, frontiers, challenges, and limitations, and emphasized the need for planetary stewardship. Electrocatalytic processes enable the production of solar fuels and commodity chemicals that address universal issues of the water, energy and food security nexus, clothing, the building sector, heating and cooling, transportation, information and communication technology, chemicals, consumer goods and services, and healthcare, toward providing global resource security and sustainability and enhancing environmental and social justice.
Collapse
Affiliation(s)
- Teona Taseska
- Department of Chemical Engineering, University of Rochester, 14627 Rochester, NY USA
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, 14627 Rochester, NY USA
| | | | - Connor P. Cox
- Materials Science Program, University of Rochester, 14627 Rochester, NY USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, 14627 Rochester, NY USA
| | - Soraya S. Ngarnim
- Department of Chemistry, University of Rochester, 14627 Rochester, NY USA
| | - Astrid M. Müller
- Department of Chemical Engineering, University of Rochester, 14627 Rochester, NY USA
- Materials Science Program, University of Rochester, 14627 Rochester, NY USA
- Department of Chemistry, University of Rochester, 14627 Rochester, NY USA
| |
Collapse
|
2
|
Yang ZZ, Zhang C, Zeng GM, Tan XF, Huang DL, Zhou JW, Fang QZ, Yang KH, Wang H, Wei J, Nie K. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Forsythe RC, Cox CP, Wilsey MK, Müller AM. Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chem Rev 2021; 121:7568-7637. [PMID: 34077177 DOI: 10.1021/acs.chemrev.0c01069] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalysis is essential to modern life and has a huge economic impact. The development of new catalysts critically depends on synthetic methods that enable the preparation of tailored nanomaterials. Pulsed laser in liquids synthesis can produce uniform, multicomponent, nonequilibrium nanomaterials with independently and precisely controlled properties, such as size, composition, morphology, defect density, and atomistic structure within the nanoparticle and at its surface. We cover the fundamentals, unique advantages, challenges, and experimental solutions of this powerful technique and review the state-of-the-art of laser-made electrocatalysts for water oxidation, oxygen reduction, hydrogen evolution, nitrogen reduction, carbon dioxide reduction, and organic oxidations, followed by laser-made nanomaterials for light-driven catalytic processes and heterogeneous catalysis of thermochemical processes. We also highlight laser-synthesized nanomaterials for which proposed catalytic applications exist. This review provides a practical guide to how the catalysis community can capitalize on pulsed laser in liquids synthesis to advance catalyst development, by leveraging the synergies of two fields of intensive research.
Collapse
Affiliation(s)
- Ryland C Forsythe
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Connor P Cox
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Astrid M Müller
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Bismuth vanadate in photoelectrocatalytic water treatment systems for the degradation of organics: A review on recent trends. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114724] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Krysiak OA, Junqueira JR, Conzuelo F, Bobrowski T, Masa J, Wysmolek A, Schuhmann W. Importance of catalyst–photoabsorber interface design configuration on the performance of Mo-doped BiVO4 water splitting photoanodes. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04636-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractPhotoelectrochemical water splitting is mostly impeded by the slow kinetics of the oxygen evolution reaction. The construction of photoanodes that appreciably enhance the efficiency of this process is of vital technological importance towards solar fuel synthesis. In this work, Mo-modified BiVO4 (Mo:BiVO4), a promising water splitting photoanode, was modified with various oxygen evolution catalysts in two distinct configurations, with the catalysts either deposited on the surface of Mo:BiVO4 or embedded inside a Mo:BiVO4 film. The investigated catalysts included monometallic, bimetallic, and trimetallic oxides with spinel and layered structures, and nickel boride (NixB). In order to follow the influence of the incorporated catalysts and their respective properties, as well as the photoanode architecture on photoelectrochemical water oxidation, the fabricated photoanodes were characterised for their optical, morphological, and structural properties, photoelectrocatalytic activity with respect to evolved oxygen, and recombination rates of the photogenerated charge carriers. The architecture of the catalyst-modified Mo:BiVO4 photoanode was found to play a more decisive role than the nature of the catalyst on the performance of the photoanode in photoelectrocatalytic water oxidation. Differences in the photoelectrocatalytic activity of the various catalyst-modified Mo:BiVO4 photoanodes are attributed to the electronic structure of the materials revealed through differences in the Fermi energy levels. This work thus expands on the current knowledge towards the design of future practical photoanodes for photoelectrocatalytic water oxidation.
Collapse
|
6
|
Orimolade BO, Arotiba OA. Towards visible light driven photoelectrocatalysis for water treatment: Application of a FTO/BiVO 4/Ag 2S heterojunction anode for the removal of emerging pharmaceutical pollutants. Sci Rep 2020; 10:5348. [PMID: 32210322 PMCID: PMC7093548 DOI: 10.1038/s41598-020-62425-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Pharmaceuticals have been classified as emerging water pollutants which are recalcitrant in nature. In the quest to find a suitable technique in removing them from contaminated water, photoelectrocatalytic oxidation method has attracted much attention in recent years. This report examined the feasibility of degrading ciprofloxacin and sulfamethoxazole through photoelectrocatalytic oxidation using FTO-BiVO4/Ag2S with p-n heterojunction as anode. BiVO4/Ag2S was prepared through electrodeposition and successive ionic layer adsorption/reaction on FTO glass. Structural and morphological studies using XRD, SEM, EDS and diffusive reflectance UV-Vis confirmed the successful construction of p-n heterojunction of BiVO4/Ag2S. Electrochemical techniques were used to investigate enhanced charge separation in the binary electrode. The FTO-BiVO4/Ag2S electrode exhibited the highest photocurrent response (1.194 mA/cm-2) and longest electron lifetime (0.40 ms) than both pristine BiVO4 and Ag2S electrodes which confirmed the reduction in recombination of charge carriers in the electrode. Upon application of the prepared FTO-BiVO4/Ag2S in photoelectrocatalytic removal of ciprofloxacin and sulfamethoxazole, percentage removal of 80% and 86% were achieved respectively with a low bias potential of 1.2 V (vs Ag/AgCl) within 120 min. The electrode possesses good stability and reusability. The results obtained revealed BiVO4/Ag2S as a suitable photoanode for removing recalcitrant pharmaceutical molecules in water.
Collapse
Affiliation(s)
- Benjamin O Orimolade
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg, South Africa.
| |
Collapse
|
7
|
Ye S, Ding C, Liu M, Wang A, Huang Q, Li C. Water Oxidation Catalysts for Artificial Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902069. [PMID: 31495962 DOI: 10.1002/adma.201902069] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Water oxidation is the primary reaction of both natural and artificial photosynthesis. Developing active and robust water oxidation catalysts (WOCs) is the key to constructing efficient artificial photosynthesis systems, but it is still facing enormous challenges in both fundamental and applied aspects. Here, the recent developments in molecular catalysts and heterogeneous nanoparticle catalysts are reviewed with special emphasis on biomimetic catalysts and the integration of WOCs into artificial photosystems. The highly efficient artificial photosynthesis depends largely on active WOCs integrated into light harvesting materials via rational interface engineering based on in-depth understanding of charge dynamics and the reaction mechanism.
Collapse
Affiliation(s)
- Sheng Ye
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Mingyao Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Aoqi Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| |
Collapse
|
8
|
Junqueira JRC, Bobrowski T, Krysiak OA, Gutkowski R, Schuhmann W. Tuning Light‐Driven Water Splitting Efficiency of Mo‐Doped BiVO
4
: Optimised Preparation and Impact of Oxygen Evolution Electrocatalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201901646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- João R. C. Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 Bochum D-44780 Germany
| | - Tim Bobrowski
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 Bochum D-44780 Germany
| | - Olga A. Krysiak
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 Bochum D-44780 Germany
- College of Inter-Faculty Individual Studies in Mathematics and Natural SciencesUniversity of Warsaw S. Banacha 2c Warsaw 02-097 Poland
| | - Ramona Gutkowski
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 Bochum D-44780 Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES) Faculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 Bochum D-44780 Germany
| |
Collapse
|
9
|
Orimolade BO, Koiki BA, Peleyeju GM, Arotiba OA. Visible light driven photoelectrocatalysis on a FTO/BiVO4/BiOI anode for water treatment involving emerging pharmaceutical pollutants. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.217] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Kim JH, Lee JS. Elaborately Modified BiVO 4 Photoanodes for Solar Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806938. [PMID: 30793384 DOI: 10.1002/adma.201806938] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/24/2018] [Indexed: 05/17/2023]
Abstract
Photoelectrochemical (PEC) cells for solar-energy conversion have received immense interest as a promising technology for renewable hydrogen production. Their similarity to natural photosynthesis, utilizing sunlight and water, has provoked intense research for over half a century. Among many potential photocatalysts, BiVO4 , with a bandgap of 2.4-2.5 eV, has emerged as a highly promising photoanode material with a good chemical stability, environmental inertness, and low cost. Unfortunately, its charge transport properties are modest, at most a hole diffusion length (Lp ) of ≈70 nm. However, recent rapid developments in multiple modification strategies have elevated it to a position as the most promising metal oxide photoanode material. This review summarizes developments in BiVO4 photoanodes in the past 10 years, in which time it has continuously broken its own performance records for PEC water oxidation. Effective modification techniques are discussed, including synthesis of nanostructures/nanopores, external/internal doping, heterojunction fabrication, surface passivation, and cocatalysts. Tandem systems for unassisted solar water splitting and PEC production of value-added chemicals are also discussed.
Collapse
Affiliation(s)
- Jin Hyun Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Sung Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
11
|
Macchioni A. The Middle-Earth between Homogeneous and Heterogeneous Catalysis in Water Oxidation with Iridium. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800798] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alceo Macchioni
- Department of Chemistry; Biology and Biotechnology; University of Perugia; Via Elce di Sotto 8 06123 - Perugia Italy
| |
Collapse
|