1
|
Matono T, Ueno S, Kato Y, Umehara N, Lang Z, Li Y, Ninomiya W, Elhallal M, Gonzales-Yañez EO, Capron M, Ishikawa S, Ueda W, Sano T, Sadakane M. Preparation and isolation of mono-Nb substituted Keggin-type phosphomolybdic acid and its application as an oxidation catalyst for isobutylaldehyde and Wacker-type oxidation. Dalton Trans 2023. [PMID: 37971057 DOI: 10.1039/d3dt02451b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The potassium and proton mixed salt of mono-Nb substituted Keggin-type phosphomolybdate, KH3[PMo11NbO40], was isolated in a pure form by reacting Keggin-type phosphomolybdic acid (H3[PMo12O40]) and potassium hexaniobate (K8Nb6O19) in water, followed by freeze-drying. The all protonic form, H4[PMo11NbO40], was isolated via proton exchange with H-resin and subsequent freeze-drying. The most crucial factor to isolate KH3[PMo11NbO40] and H4[PMo11NbO40] in pure forms is the evaporation of water using the freeze-drying method. Using a similar procedure, the potassium salt of the di-Nb substituted compound K5[PMo10Nb2O40] was isolated. H4[PMo11NbO40] exhibited high catalytic activity for oxidizing isobutylaldehyde to methacrolein and moderate catalytic activity for the Wacker-type oxidation of allyl phenyl ether when combined with Pd(OAc)2.
Collapse
Affiliation(s)
- Takashi Matono
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Shinsuke Ueno
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Yuki Kato
- MMA R&D Center, Mitsubishi Chemical Corporation, 20-1, Miyuki-cho, Ootake, Hiroshima 739-0693, Japan
| | - Naoya Umehara
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wataru Ninomiya
- MMA R&D Center, Mitsubishi Chemical Corporation, 20-1, Miyuki-cho, Ootake, Hiroshima 739-0693, Japan
| | - Maher Elhallal
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Edgar Osiris Gonzales-Yañez
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Mickael Capron
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Satoshi Ishikawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Tsuneji Sano
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| |
Collapse
|
2
|
Immobilization of Polyoxometalates on Carbon Nanotubes: Tuning Catalyst Activity, Selectivity and Stability in H2O2-Based Oxidations. Catalysts 2022. [DOI: 10.3390/catal12050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In recent years, carbon nanotubes (CNTs), including N-doped ones (N-CNTs), have received significant attention as supports for the construction of heterogeneous catalysts. In this work, we summarize our progress in the application of (N)-CNTs for immobilization of anionic metal-oxygen clusters or polyoxometalates (POMs) and use of (N)-CNTs-supported POM as catalysts for liquid-phase selective oxidation of organic compounds with the green oxidant–aqueous hydrogen peroxide. We discuss here the main factors, which favor adsorption of POMs on (N)-CNTs and ensure a quasi-molecular dispersion of POM on the surface and their strong attachment to the support. The effects of the POM nature, N-doping of CNTs, acid additives, and other factors on the POM immobilization process and catalytic activity/selectivity of the (N)-CNTs-immobilized POMs are analyzed. Particular attention is drawn to the critical issue of the catalyst stability and reusability. The scope and limitations of the POM/(N)-CNTs catalysts in H2O2-based selective oxidations are discussed.
Collapse
|
3
|
State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213966] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Rajes K, Walker KA, Hadam S, Zabihi F, Ibrahim-Bacha J, Germer G, Patoka P, Wassermann B, Rancan F, Rühl E, Vogt A, Haag R. Oxidation-Sensitive Core-Multishell Nanocarriers for the Controlled Delivery of Hydrophobic Drugs. ACS Biomater Sci Eng 2021; 7:2485-2495. [PMID: 33905661 DOI: 10.1021/acsbiomaterials.0c01771] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A synthetic route for oxidation-sensitive core-multishell (osCMS) nanocarriers was established, and their drug loading and release properties were analyzed based on their structural variations. The nanocarriers showed a drug loading of 0.3-3 wt % for the anti-inflammatory drugs rapamycin and dexamethasone and the photosensitizer meso-tetra-hydroxyphenyl-porphyrin (mTHPP). Oxidative processes of the nanocarriers were probed in vitro by hydrogen peroxide, and the degradation products were identified by infrared spectroscopy supported by ab initio calculations, yielding mechanistic details on the chemical changes occurring in redox-sensitive nanocarriers. Oxidation-triggered drug release of the model drug Nile Red measured and assessed by time-dependent fluorescence spectroscopy showed a release of up to 80% within 24 h. The drug delivery capacity of the new osCMS nanocarriers was tested in ex vivo human skin with and without pretreatments to induce local oxidative stress. It was found that the delivery of mTHPP was selectively enhanced in skin under oxidative stress. The number and position of the thioether groups influenced the physicochemical as well as drug delivery properties of the carriers.
Collapse
Affiliation(s)
- Keerthana Rajes
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Karolina A Walker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany.,Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Jumana Ibrahim-Bacha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Gregor Germer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Piotr Patoka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Bernhard Wassermann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Eckart Rühl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3 and Arnimalle 22, 14195 Berlin, Germany
| |
Collapse
|
5
|
Ma DM, Yu X, Ding A, Guo H, Qian DJ. Interfacial self-assembled thioxathone monolayers on the surfaces of silica nanoparticles as efficient heterogeneous photocatalysts for the selective oxidation of aromatic thioethers under air atmosphere. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Vilanculo CB, Da Silva MJ. Unraveling the role of the lacunar Na 7PW 11O 39 catalyst in the oxidation of terpene alcohols with hydrogen peroxide at room temperature. NEW J CHEM 2020. [DOI: 10.1039/c9nj04725e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Na7PW11O39 lacunar salt was the most active among Keggin lacunar salts (Na8SiW11O39 and Na7PMo11O39), a saturated salt (Na7PW12O40) and heteropolyacid catalysts.
Collapse
Affiliation(s)
- Castelo B. Vilanculo
- Chemistry Department
- Pedagogic University of Mozambique
- FCNM
- Campus of Lhanguene
- Maputo
| | | |
Collapse
|
7
|
Evtushok VY, Ivanchikova ID, Podyacheva OY, Stonkus OA, Suboch AN, Chesalov YA, Zalomaeva OV, Kholdeeva OA. Carbon Nanotubes Modified by Venturello Complex as Highly Efficient Catalysts for Alkene and Thioethers Oxidation With Hydrogen Peroxide. Front Chem 2019; 7:858. [PMID: 31921779 PMCID: PMC6923790 DOI: 10.3389/fchem.2019.00858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/26/2019] [Indexed: 12/02/2022] Open
Abstract
In this work, we elaborated heterogeneous catalysts on the basis of the Venturello complex [PO4{WO(O2)2}4]3- (PW4) and nitrogen-free or nitrogen-doped carbon nanotubes (CNTs or N-CNTs) for epoxidation of alkenes and sulfoxidation of thioethers with aqueous hydrogen peroxide. Catalysts PW4/CNTs and PW4/N-CNTs (1.8 at. % N) containing 5-15 wt. % of PW4 and differing in acidity have been prepared and characterized by elemental analysis, N2 adsorption, IR spectroscopy, HR-TEM, and HAADF-STEM. Studies by STEM in HAADF mode revealed a quasi-molecular dispersion of PW4 on the surface of CNTs. The addition of acid during the immobilization is not obligatory to ensure site isolation and strong binding of PW4 on the surface of CNTs, but it allows one to increase the PW4 loading and affects both catalytic activity and product selectivity. Catalytic performance of the supported PW4 catalysts was evaluated in H2O2-based oxidation of two model substrates, cyclooctene and methyl phenyl sulfide, under mild conditions (25-50°C). The best results in terms of activity and selectivity were obtained using PW4 immobilized on N-free CNTs in acetonitrile or dimethyl carbonate as solvents. Catalysts PW4/CNTs can be applied for selective oxidation of a wide range of alkenes and thioethers provided a balance between activity and selectivity of the catalyst is tuned by a careful control of the amount of acid added during the immobilization of PW4. Selectivity, conversion, and turnover frequencies achieved in epoxidations over PW4/CNTs catalysts are close to those reported in the literature for homogeneous systems based on PW4. IR spectroscopy confirmed the retention of the Venturello structure after use in the catalytic reactions. The elaborated catalysts are stable to metal leaching, show a truly heterogeneous nature of the catalysis, can be easily recovered by filtration, regenerated by washing and evacuation, and then reused several times without loss of the catalytic performance.
Collapse
Affiliation(s)
- Vasiliy Yu Evtushok
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Irina D. Ivanchikova
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
| | - Olga Yu Podyacheva
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Olga A. Stonkus
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Arina N. Suboch
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Yuri A. Chesalov
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
| | - Olga V. Zalomaeva
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
| | - Oxana A. Kholdeeva
- Department of Fine Organic Synthesis and Renewable Energy Sources, Boreskov Institute of Catalysis, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|