1
|
Liang J, Sun J, Cao X, Li X, Chen X, Xing R, Kong J. Enhanced Reaction Kinetics in Sodium-Ion Batteries Achieved by 3D Heterostructure CoS 2/CoS with Self-Induced Internal Electric Field. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502241. [PMID: 40278821 DOI: 10.1002/advs.202502241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Indexed: 04/26/2025]
Abstract
The sluggish charging and restricted mass transfer of cobalt-based sulfides have provoked in cycling stability, poor rate, and low initial coulombic efficiency, impeding their practical application. Developing electronic configurations and heterostructures are effective methods to improve conductivity and accelerate mass transfer. In this work, heterostructured carbon/cobalt sulfides embedded in honeycomb-like nitrogen-doped carbon (HC@CoS2/CoS/NC) were proposed as a cost-effective strategy. These composites feature interconnected channels, facilitating rapid electron transport and efficient electrolyte diffusion. This self-induced internal electric field design of HC@CoS₂/CoS/NC enhanced the charge movement, inherent conductivity and optimized the electrochemical kinetics as anode materials. Theoretical calculations indicate that the development of heterostructures with self-induced internal electric fields is crucial for improving the charge particle/electron movement during the charge-discharge cycles of sodium-ion batteries (SIBs), leading to enhanced Na+ diffusion. This anode demonstrated a high specific capacity of 809.0 mAh g-1 at 0.1 A g-1, retaining a capacity of 465.2 mAh g-1 after 700 cycles at 15 A g-1. When paired with Na3V2(PO4)3, the full-cell maintained a specific capacity of 108.9 mAh g-1 after 200 cycles at 1.0 A g-1. This research presents an effective approach for developing transitional metal sulfide heterostructures as high-performance anode materials for SIBs.
Collapse
Affiliation(s)
- Jin Liang
- MOE Key Lab of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Lab of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science &Technology Building, No.45th, Gaoxin South 9th Road, Nanshan, Shenzhen, 518063, P. R. China
| | - Jiawen Sun
- MOE Key Lab of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Lab of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xin Cao
- MOE Key Lab of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Lab of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaoshan Li
- MOE Key Lab of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Lab of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaoyi Chen
- MOE Key Lab of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Lab of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ruizhe Xing
- MOE Key Lab of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Lab of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jie Kong
- MOE Key Lab of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Lab of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
2
|
Pan R, Liu S, Guo X, Duan Z, Fan Q, Liu Y, Zheng X, Li C, Kong Q, Zhang J. Non-carbonization annealing toward regulation of cobalt-based organic-inorganic hybrids as advanced electrocatalysts for water splitting. J Colloid Interface Sci 2025; 682:671-679. [PMID: 39642552 DOI: 10.1016/j.jcis.2024.11.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
High-temperature carbonization typically used in the preparation of advanced electrocatalysts poses significant challenges in preserving abundant functional groups essential for reactant adsorption and component stabilization. To address this, a solvothermal synthesis followed by non-carbonization annealing approach is proposed to fabricate a series of cobalt-based organic-inorganic hybrids derived from cobalt-based glycerate nanospheres (GNs). Notably, annealing in phosphorous and inert atmospheres preserves the solid nanospherical structure, whereas treatment in sulfur-rich environments results in the formation of hollowed nanospheres. Among these hybrids, phosphorized solid cobalt GNs (Co-P-GNs) exhibit the highest catalytic activity for hydrogen evolution reaction (HER), achieving a low overpotential of 152 mV at 10 mA cm-2. Meanwhile, sulfurized hollow cobalt-iron GNs (Co-Fe-S-HGNs) demonstrate good performance in catalyzing oxygen evolution reaction (OER), with a low overpotential of 273 mV at 10 mA cm-2. Both catalysts exhibit robust stability and maintain 100 % Faradaic efficiency during operation in electrolyzers for water splitting. The high performance not only stems from the well-dispersed phosphide and sulfide crystallites, offering ample catalytic active sites; but also benefits from the partially thermolyzed organic matrix enriched with heteroatoms and functional groups, which facilitates ion adsorption to initiate the reactions and tightly clenches loaded components to stabilize the active species.
Collapse
Affiliation(s)
- Ruiyu Pan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Shanjing Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Xingmei Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| | - Zhongyao Duan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Qianqian Fan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Yuanjun Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Xiangjun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Qinghong Kong
- School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junhao Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.
| |
Collapse
|
3
|
Gu J, Li Z, Hong B, Wang M, Zhang Z, Lai Y, Li J, Zhang L. Engineering Electrolytes with Transition Metal Ions for the Rapid Sulfur Redox and In Situ Solidification of Polysulfides in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61934-61945. [PMID: 39495732 DOI: 10.1021/acsami.4c11693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Lithium-sulfur (Li-S) batteries have been pursued due to their high theoretical energy density and superb cost-effectiveness. However, the dissolution-conversion mechanism of sulfur inevitably leads to shuttle effects and interface passivation issues, which impede Li-S battery practical application. Herein, the approach of adopting transition metal salts (CoI2) to engineering the electrolyte is proposed. Different from anchored transition metal catalysts in the cathode, soluble cobalt ions can chemically reduce and solidify polysulfides, alleviating the dependence of sulfur conversion on the conductive interface while suppressing the shuttle effect. Importantly, all elements in CoI2 are in the lowest valence state and solid complexes are formed after the redox reaction, which prevents the migration of high valent Co3+ to the anode, thus overcoming the poor compatibility between redox mediator and Li anode. Notably, I3- has the function of eliminating dead sulfur and dead lithium, which we apply to Li-S batteries. After activating I3- at a certain frequency, Li-S batteries indeed achieve a longer and more stable cycle life. By combining the regulatory behavior of anions and cations, the electrolyte is engineered for Li-S batteries with high capacity, long lifespan, and excellent rate performance.
Collapse
Affiliation(s)
- Jiahao Gu
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083 Hunan, China
| | - Zhaoyang Li
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083 Hunan, China
| | - Bo Hong
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083 Hunan, China
- National Energy Metal Resources and New Materials Key Laboratory, Changsha, 410083 Hunan, China
| | - Mengran Wang
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083 Hunan, China
- National Energy Metal Resources and New Materials Key Laboratory, Changsha, 410083 Hunan, China
| | - Zhian Zhang
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083 Hunan, China
- National Energy Metal Resources and New Materials Key Laboratory, Changsha, 410083 Hunan, China
| | - Yanqing Lai
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083 Hunan, China
- National Energy Metal Resources and New Materials Key Laboratory, Changsha, 410083 Hunan, China
- Engineering Research Centre of Advanced Battery Materials, The Ministry of Education, Changsha, 410083 Hunan, China
| | - Jie Li
- School of Metallurgy and Environment, Hunan Province Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha, 410083 Hunan, China
- Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Changsha, 410083 Hunan, China
| | - Libo Zhang
- Luoyang E-Energy Storage and Transformation System Co. Ltd., Luoyang, 471000 Henan, China
| |
Collapse
|
4
|
Zheng M, Zhao J, Wu W, Chen R, Chen S, Cheng N. Co/CoS 2 Heterojunction Embedded in N, S-Doped Hollow Nanocage for Enhanced Polysulfides Conversion in High-Performance Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303192. [PMID: 37712177 DOI: 10.1002/smll.202303192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/26/2023] [Indexed: 09/16/2023]
Abstract
Modulating the electronic configuration of the substrate to achieve the optimal chemisorption toward polysulfides (LiPSs) for boosting polysulfide conversion is a promising way to the efficient Li-S batteries but filled with challenges. Herein, a Co/CoS2 heterostructure is elaborately built to tuning d-orbital electronic structure of CoS2 for a high-performance electrocatalyst. Theoretical simulations first evidence that Co metal as the electron donator can form a built-in electric field with CoS2 and downshift the d-band center, leading to the well-optimized adsorption strength for lithium polysulfides on CoS2 , thus contributing a favorable way for expediting the redox reaction kinetics of LiPSs. As verification of prediction, a Co/CoS2 heterostructure implanted in porous hollow N, S co-doped carbon nanocage (Co/CoS2 @NSC) is designed to realize the electronic configuration regulation and promote the electrochemical performance. Consequently, the batteries assembled with Co/CoS2 @NSC cathode display an outstanding specific capacity and an admirable cycling property as well as a salient property of 8.25 mAh cm-2 under 8.18 mg cm-2 . The DFT calculation also reveals the synergistic effect of N, S co-doping for enhancing polysulfide adsorption as well as the detriment of excessive sulfur doping.
Collapse
Affiliation(s)
- Ming Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Junzhe Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Suhao Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
5
|
In-situ synthesis of a novel ZnO/CuCo2S4 p-n heterojunction photocatalyst with improved phenol and rhodamine B degradation performance and investigating the mechanism of charge carrier separation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Li D, Zhao L, Xia Q, Liu L, Fang W, Liu Y, Zhou Z, Long Y, Han X, Zhang Y, Wang J, Wu Y, Liu H. CoS 2 Nanoparticles Anchored on MoS 2 Nanorods As a Superior Bifunctional Electrocatalyst Boosting Li 2 O 2 Heteroepitaxial Growth for Rechargeable Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105752. [PMID: 34897989 DOI: 10.1002/smll.202105752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Developing an excellent bifunctional catalyst is essential for the commercial application of Li-O2 batteries. Heterostructures exhibit great application potential in the field of energy catalysis because of the accelerated charge transfer and increased active sites on their surfaces. In this work, CoS2 nanoparticles decorated on MoS2 nanorods are constructed and act as a superior cathode catalyst for Li-O2 batteries. Coupling MoS2 and CoS2 can not only synergistically enhance their electrical conductivity and electrochemical activity, but also promote the heteroepitaxial growth of discharge products on the heterojunction interfaces, thus delivering high discharge capacity, stable cycle performance, and good rate capability.
Collapse
Affiliation(s)
- Deyuan Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250100, China
| | - Qing Xia
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry, University (NFU), Nanjing, 210037, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Huakun Liu
- University of Wollongong, Institute for Superconducting and Electronic Materials (ISEM), Wollongong, NSW, 2522, Australia
| |
Collapse
|
7
|
Kim M, Kim SH, Lee JH, Kim J. Unravelling lewis acidic and reductive characters of normal and inverse nickel-cobalt thiospinels in directing catalytic H 2O 2 cleavage. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122347. [PMID: 32097860 DOI: 10.1016/j.jhazmat.2020.122347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
(Inverse) spinel-typed bimetallic sulfides are fascinating H2O2 scissors because of the inclusion of S2-, which can regenerate metals (Mδ+, δ ≤ 2) used to produce •OH via H2O2 dissection. These sulfides, however, were under-explored regarding compositional, structural, and electronic tunabilities based on the proper selection of metal constituents. Motivated by S-modified Niδ+/Coδ+ promising to H2O2 cleavage, Ni2CoS4, NiCo2S4, NiS/CoS were synthesized and contrasted with regards to their catalytic traits. Ni2CoS4 provided the greatest activity in dissecting H2O2 among the catalysts. Nonetheless, Ni2CoS4 catalyzed H2O2 scission primarily via homogeneous catalysis mediated by leached Niδ+/Coδ+. Conversely, NiCo2S4, NiS, and CoS catalyzed H2O2 cleavage mainly via unleached Niδ+/Coδ+-enabled heterogeneous catalysis. Of significance, NiCo2S4 provided Lewis acidic strength favorable to adsorb H2O2 and desorb •OH compared to NiS and CoS, respectively. Of additional significance, NiCo2S4 provided S2- with lesser energy required to reduce M(δ+1)+ via e- transfer than NiS/CoS. Hence, NiCo2S4 prompted H2O2 scission cycle per unit time better than NiS/CoS, as evidenced by kinetic assessments. NiCo2S4 was also superior to Ni2CoS4 because of the elongated lifespan anticipated as •OH producer, resulting from heterogeneous catalysis with moderate Niδ+/Coδ+ leaching. Furthermore, NiCo2S4 revealed the greatest recyclability and mineralization efficiency in decomposing recalcitrants via •OH-mediated oxidation.
Collapse
Affiliation(s)
- Minsung Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea; Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, South Korea.
| | - Sang Hoon Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea; Department of Nano & Information Technology in Korea Institute of Science and Technology (KIST) School, University of Science and Technology (UST), Daejeon, 34113, South Korea.
| | - Jung-Hyun Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, South Korea.
| | - Jongsik Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
| |
Collapse
|
8
|
Liu J, Xiao SH, Zhang Z, Chen Y, Xiang Y, Liu X, Chen JS, Chen P. Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS 2 (M = Co, Ni) decoration for high-performance Li-S battery. NANOSCALE 2020; 12:5114-5124. [PMID: 32073093 DOI: 10.1039/c9nr10419d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Even though lithium-sulfur batteries have appealing advantages including a high theoretical capacity and energy density, their commercial implementation has been seriously hindered by some notorious reasons, particularly the severe shuttling effect, the insulating nature of sulfur, the large volumetric variation during cycling and the sluggish redox reaction kinetics. To tackle these issues, a biomass (ginkgo-nut) derived N,S-codoped porous carbon (GC) with an interconnected honeycomb-like hierarchical structure is synthesized by a templated carbonization method, followed by hydrothermal growth of transition metal sulfide MS2 (M = Co, Ni) nanocrystals, giving rise to a hybrid 3D electrocatalyst. The unique structure constructed by N,S-codoping can expose more active sites and polar surfaces to physically confine and chemically adsorb polysulfides. Meanwhile, the embedded MS2 polyhedral-like nanoparticles further enhance the interaction with polysulfides and improve conversion and redox kinetics of polysulfides. Remarkably, with 80 wt% sulfur loading (∼2.5 mg cm-2), GC-CoS2 exhibits a reversible capacity of 988.8 mA h g-1 after 500 cycles at 0.1 C and an excellent capacity of 610.3 mA h g-1 after 1000 cycles at 2 C, outperforming bare GC and GC-NiS2. Compared with the electrochemical performances of the representative reported biomass-derived sulfur host for Li-S batteries, evidently, both the discharge capacity and cycling stability of our GC-CoS2 sample are superior. Density functional theory (DFT) calculation results suggest that CoS2 exhibits a higher binding energy towards lithium polysulfides and a lower energy barrier for Li+ diffusion on the surface compared to the NiS2 counterpart, suggesting that CoS2 is a better choice for lithium-sulfur batteries than NiS2. This work provides a new avenue to rationally design a carbonaceous catalyst host for high-performance lithium-sulfur batteries.
Collapse
Affiliation(s)
- Jintao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Shu Hao Xiao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Zheye Zhang
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006 Australia
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Xingquan Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Peng Chen
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|