1
|
Naina VR, Singh AK, Shubham, Krätschmer F, Lebedkin S, Kappes MM, Roesky PW. Heteroleptic copper(I) complexes with coumarin-substituted aminodiphosphine and diimine ligands: synthesis and photophysical studies. Dalton Trans 2023; 52:12618-12622. [PMID: 37642577 DOI: 10.1039/d3dt02317f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The synthesis of heteroleptic Cu(I) complexes with coumarin-functionalized aminodiphosphine and diimine ligands is described. The complexes show yellow to deep-red phosphorescence in the solid state at ambient temperature with quantum yields up to 21%. The emission color of the complexes can be tuned by systematic modifications in the ligand system.
Collapse
Affiliation(s)
- Vanitha R Naina
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| | - Akhil K Singh
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| | - Shubham
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| | - Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany.
| |
Collapse
|
2
|
Experimental Evaluation of Copper Redox Couples in Aqueous and Aprotic Electrolytes, for Their Application in A Flow Battery. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Recent developments of photoactive Cu(I) and Ag(I) complexes with diphosphine and related ligands. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Wang XF, Tan C, Sun YK, Li N, feng Y, Cheng L, Cao M. Halogen-induced Core Structural Evolution of Four Dinuclear Copper(Ι) Luminescent Coordination Compounds. CrystEngComm 2022. [DOI: 10.1039/d2ce00793b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of [Cu(CH3CN)4]ClO4 and 2-(diphenylphosphino) pyridine (dppy) along with different halogen reagents NH4X (X = Cl-, Br- and I-), four luminescent di-copper(I) coordination compounds, namely [Cu2(μ-dppy)3Cl]ClO4·H2O (1a), [Cu2(μ-dppy)3Br]ClO4 (2a), Cu2(μ-Br)2(μ-dppy)(η-dppy)2...
Collapse
|
5
|
Wang T, Zhou Y, Xu Y, Cheng GJ. Computational exploration of copper catalyzed vinylogous aerobic oxidation of unsaturated compounds. Sci Rep 2021; 11:1304. [PMID: 33446723 PMCID: PMC7809353 DOI: 10.1038/s41598-020-80188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Selective oxidation is one of the most important and challenging transformations in both academic research and chemical industry. Recently, a highly selective and efficient way to synthesize biologically active γ-hydroxy-α,β-unsaturated molecules from Cu-catalyzed vinylogous aerobic oxidation of α,β- and β,γ-unsaturated compounds has been developed. However, the detailed reaction mechanism remains elusive. Herein, we report a density functional theory study on this Cu-catalyzed vinylogous aerobic oxidation of γ,γ-disubstituted α,β- and β,γ-unsaturated isomers. Our computational study unveils detailed mechanism for each elementary step, i.e. deprotonation, O2 activation, and reduction. Besides, the origin of regioselectivity, divergent reactivities of substrates as well as reducing agents, and the byproduct generation have also been investigated. Notably, the copper catalyst retains the + 2 oxidation state through the whole catalytic cycle and plays essential roles in multiple steps. These findings would provide hints on mechanistic studies and future development of transition metal-catalyzed aerobic oxidation reactions.
Collapse
Affiliation(s)
- Ting Wang
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Yu Zhou
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yao Xu
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, Shenzhen Key Laboratory of Steroid Drug Development, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China.
| |
Collapse
|
6
|
Wen GL, Liu B, Liu DF, Wang FW, Li L, Zhu L, Song DM, Huang CX, Wang YY. Four congenetic zinc(II) MOFs from delicate solvent-regulated strategy: Structural diversities and fluorescent properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Yanagida S, Yoshida M, Sameera WMC, Kobayashi A, Kato M. Insight into the Origin of Competitive Emission of Copper(I) Complexes Bearing Diimine and Diphosphine Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sae Yanagida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - W. M. C. Sameera
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
8
|
Tanase T, Otaki R, Okue A, Nakamae K, Nakajima T. Dinuclear Copper Complexes Triply Bridged by a Tetraphosphane,
rac
‐Ph
2
PCH
2
P(Ph)CH
2
P(Ph)CH
2
PPh
2. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tomoaki Tanase
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| | - Risa Otaki
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| | - Ayumi Okue
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| | - Kanako Nakamae
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| | - Takayuki Nakajima
- Department of Chemistry Faculty of Science Nara Women's University 630–8506 Nara Japan
| |
Collapse
|