1
|
Sapo-34 Obtained from Amazonian Flint Kaolin: Influence of Impurities of “Oxidized Fe/Ti” in Synthesis and Its Application in the Removal of Cationic Dye from Water. Processes (Basel) 2023. [DOI: 10.3390/pr11030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Non-processed kaolin (flint kaolin) from a mine located in the Capim area (Amazon region, northern Brazil), usually considered as waste, was selected as a source of silicon and aluminum in the synthesis of SAPO-34. This is a molecular sieve and cationic exchanger chosen for tests focusing on the removal of methylene blue in aqueous solutions, which is a cationic dye widely used by textile industries in Brazil. The results revealed that the SAPO-34 has been successfully synthesized with typical cubic morphology, good crystallinity (>90%), and thermal stability (~998 °C). Although the oxidized Fe/Ti impurities contained in the flint kaolin affect the degree of crystallinity of the zeolitic product, its adsorptive properties are not significantly affected, which demonstrates the excellent adsorption results (pH = 11; % removal > 90%). It proved to be an adsorbent with considerable adsorption capacity (9.83 mg·g−1). The pH test confirmed the acidic surface characteristics (pH solution 2–4; ↓ removal), and the kinetic model that best fitted the experimental data was pseudo-second-order, with R2 = 0.998 (kinetics controlled by chemisorption).
Collapse
|
2
|
Wu R, Han J, Wang Y, Chen M, Tian P, Zhou X, Xu J, Zhang JN, Yan W. Exclusive SAPO-seeded synthesis of ZK-5 zeolite for selective synthesis of methylamines. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01544g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZK-5 zeolite with superior selectivity for monomethylamine (MMA) plus dimethylamine (DMA) is fast synthesized using the exclusive silicoaluminophosphate SAPO-34 seed and K+ and Na+ cations.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jinfeng Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yunzheng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Mengyang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Tian
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jia-Nan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
3
|
Synthesis of SAPO-34 Nanoplates with High Si/Al Ratio and Improved Acid Site Density. NANOMATERIALS 2021; 11:nano11123198. [PMID: 34947545 PMCID: PMC8703864 DOI: 10.3390/nano11123198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022]
Abstract
Two-dimensional SAPO-34 molecular sieves were synthesized by microwave hydrothermal process. The concentrations of structure directing agent (SDA), phosphoric acid, and silicon in the gel solution were varied and their effect on phase, shape, and composition of synthesized particles was studied. The synthesized particles were characterized by various techniques using SEM, XRD, BET, EDX, and NH3-TPD. Various morphologies of particles including isotropic, hyper rectangle, and nanoplates were obtained. It was found that the Si/Al ratio of the SAPO-34 particles was in a direct relationship with the density of acid sites. Moreover, the gel composition and preparation affected the chemistry of the synthesized particles. The slow addition of phosphoric acid improved the homogeneity of synthesis gel and resulted in SAPO-34 nanoplates with high density of acid sites, 3.482 mmol/g. The SAPO-34 nanoplates are expected to serve as a high performance catalyst due to the low mass transfer resistance and the high density of active sites.
Collapse
|
4
|
Zhou Y, Shi H, Wang B, Chen G, Yi J, Li J. The synthesis of SAPO-34 zeolite for an improved MTO performance: tuning the particle size and an insight into the formation mechanism. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00016k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Effect of gel systems, additives and crystallization conditions on the size of SAPO-34 and the MTO performance has been studied.
Collapse
Affiliation(s)
- Yida Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Huaizhong Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jian Yi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
5
|
Chen X, Jiang R, Zhou Z, Wang X. Synthesis of SAPO‐34 Zeolite from Laponite and Its Application in the MTO Reaction. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xueshuai Chen
- School of Chemical Engineering and Technology China University of Mining and Technology 221116 Xuzhou Jiangsu China
| | - Rongli Jiang
- School of Chemical Engineering and Technology China University of Mining and Technology 221116 Xuzhou Jiangsu China
| | - Zihan Zhou
- School of Chemical Engineering and Technology China University of Mining and Technology 221116 Xuzhou Jiangsu China
| | - Xingwen Wang
- School of Chemical Engineering and Technology China University of Mining and Technology 221116 Xuzhou Jiangsu China
| |
Collapse
|