1
|
Rola M, Zielonka J, Smulik-Izydorczyk R, Pięta J, Pierzchała K, Sikora A, Michalski R. Boronate-Based Bioactive Compounds Activated by Peroxynitrite and Hydrogen Peroxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100040. [PMID: 39678628 PMCID: PMC11637410 DOI: 10.1016/j.rbc.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Boronates react directly and stoichiometrically with peroxynitrite and hydrogen peroxide. For this reason, boronates have been widely used as peroxynitrite- and hydrogen peroxide-sensitive moieties in various donors of bioactive compounds. So far, numerous boronate-based prodrugs and theranostics have been developed, characterized, and used in biological research. Here, the kinetic aspects of their activation are discussed, and the potential benefits of modifying their original structure with a boronic or boronobenzyl moiety are described.
Collapse
Affiliation(s)
- Monika Rola
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
2
|
Chernii S, Selin R, Bila G, Bilyy R, Körber M, Mokhir A. Red Fluorescent Aminoferrocene (Pro)Drugs for in Cellulo and in Vivo Imaging. Chemistry 2024; 30:e202401107. [PMID: 38923064 DOI: 10.1002/chem.202401107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Red fluorescent dyes are usually charged, lipophilic molecules with relatively high molecular weight, which tend to localize in specific intracellular locations, e. g., a cyanine dye Cy5 is biased towards mitochondria. They are often used as markers of biomolecules including nucleic acids and proteins. Since the molecular weight of the dyes is much smaller than that of the biomolecules, the labelling has a negligible effect on the properties of the biomolecules. In contrast, conjugation of the dyes to low molecular weight (pro)drugs can dramatically alter their properties. For example, conjugates of Cy5 with lysosome-targeting aminoferrocenes accumulate in mitochondria and exhibit no intracellular effects characteristic for the parent (pro)drugs. Herein we tested several neutral and negatively charged dyes for labelling lysosome-targeting aminoferrocenes 7 and 8 as well as a non-targeted control 3. We found that a BODIPY derivative BDP-TR exhibits the desired unbiased properties: the conjugation does not disturb the intracellular localization of the (pro)drugs, their mode of action, and cancer cell specificity. We used the conjugates to clarify the mechanism of action of the aminoferrocenes. In particular, we identified new intermediates, explained why lysosome-targeting aminoferrocenes are more potent than their non-targeted counterparts, and evaluated their distribution in vivo.
Collapse
Affiliation(s)
- Svitlana Chernii
- Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Chair Organic Chemistry II, Nikolaus-Fiebiger str. 10, 91058, Erlangen, Germany
- Innovation Development Center ABN LLC, Pirogov str. 2/37, 01030, Kyiv, Ukraine
| | - Roman Selin
- Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Chair Organic Chemistry II, Nikolaus-Fiebiger str. 10, 91058, Erlangen, Germany
- Institute of General and Inorganic Chemistry NASU, 32/34 Palladin Ave., 03142, Kyiv, Ukraine
| | - Galyna Bila
- Lectinotest R&D, Mechanichna str. 2, 79024, Lviv, Ukraine
- Danylo Halytsky Lviv National Medical University, Department of Histology, Cytology and Embryology, Pekarska str. 68, 79010, Lviv, Ukraine
| | - Rostyslav Bilyy
- Lectinotest R&D, Mechanichna str. 2, 79024, Lviv, Ukraine
- Danylo Halytsky Lviv National Medical University, Department of Histology, Cytology and Embryology, Pekarska str. 68, 79010, Lviv, Ukraine
| | - Marlies Körber
- Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Chair Organic Chemistry II, Nikolaus-Fiebiger str. 10, 91058, Erlangen, Germany
| | - Andriy Mokhir
- Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Chair Organic Chemistry II, Nikolaus-Fiebiger str. 10, 91058, Erlangen, Germany
| |
Collapse
|
3
|
Čakić Semenčić M, Kovačević M, Barišić L. Recent Advances in the Field of Amino Acid-Conjugated Aminoferrocenes-A Personal Perspective. Int J Mol Sci 2024; 25:4810. [PMID: 38732028 PMCID: PMC11084972 DOI: 10.3390/ijms25094810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The development of turn-based inhibitors of protein-protein interactions has attracted considerable attention in medicinal chemistry. Our group has synthesized a series of peptides derived from an amino-functionalized ferrocene to investigate their potential to mimic protein turn structures. Detailed DFT and spectroscopic studies (IR, NMR, CD) have shown that, for peptides, the backbone chirality and bulkiness of the amino acid side chains determine the hydrogen-bond pattern, allowing tuning of the size of the preferred hydrogen-bonded ring in turn-folded structures. However, their biological potential is more dependent on their lipophilicity. In addition, our pioneering work on the chiroptical properties of aminoferrocene-containing peptides enables the correlation of their geometry with the sign of the CD signal in the absorption region of the ferrocene chromophore. These studies have opened up the possibility of using aminoferrocene and its derivatives as chirooptical probes for the determination of various chirality elements, such as the central chirality of amino acids and the helicity of peptide sequences.
Collapse
Affiliation(s)
| | | | - Lidija Barišić
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.Č.S.); (M.K.)
| |
Collapse
|
4
|
Koszytkowska-Stawińska M, Buchowicz W. Ferrocene-triazole conjugates: do we know why they are biologically active? Dalton Trans 2023; 52:1501-1517. [PMID: 36651023 DOI: 10.1039/d2dt03161b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bioorganometallic chemistry of ferrocene has been gaining significance in recent years. This review presents ferrocene-triazole conjugates displaying significant biological properties. The conjugates have been synthesized via azide-alkyne cycloaddition reactions. The data are summarized according to the type of activity (anticancer, antibacterial and/or antifungal, antiprotozoal, and other effects). The results of studies concerning the understanding of the role of the ferrocene core in their biological activity are highlighted. While generally the mode of action of these organometallic species remains unclear, the importance of redox properties of ferrocene has been postulated in several cases.
Collapse
Affiliation(s)
- Mariola Koszytkowska-Stawińska
- Faculty of Chemistry, Chair of Organic Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Włodzimierz Buchowicz
- Faculty of Chemistry, Chair of Organic Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
5
|
Wolfram A, Fuentes-Soriano P, Herold-Mende C, Romero-Nieto C. Boron- and phosphorus-containing molecular/nano platforms: exploiting pathological redox imbalance to fight cancer. NANOSCALE 2022; 14:17500-17513. [PMID: 36326151 DOI: 10.1039/d2nr03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer is currently the second leading cause of death globally. Despite multidisciplinary efforts, therapies to fight various types of cancer still remain inefficient. Reducing high recurrence rates and mortality is thus a major challenge to tackle. In this context, redox imbalance is an undervalued characteristic of cancer. However, it may be targeted by boron- and phosphorus-containing materials to selectively or systemically fight cancer. In particular, boron and phosphorus derivatives are attractive building blocks for rational drug discovery due to their unique and wide regioselective chemistry, high degree of tuneability and chemical stability. Thus, they can be meticulously employed to access tunable molecular platforms to selectively exploit the redox imbalance of cancer cells towards necrosis/apoptosis. This field of research holds a remarkable potential; nevertheless, it is still in its infancy. In this mini-review, we underline recent advances in the development of boron- or phosphorus-derivatives as molecular/nano platforms for rational anticancer drug design. Our goal is to provide comprehensive information on different methodologies that bear an outstanding potential to further develop this very promising field of research.
Collapse
Affiliation(s)
- Anna Wolfram
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Pablo Fuentes-Soriano
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Carlos Romero-Nieto
- Faculty of Pharmacy, University of Castilla-La Mancha Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain.
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Fayolle C, Pigeon P, Fischer-Durand N, Salmain M, Buriez O, Vessières A, Labbé E. Synthesis, Electrochemical and Fluorescence Properties of the First Fluorescent Member of the Ferrocifen Family and of Its Oxidized Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196690. [PMID: 36235225 PMCID: PMC9571219 DOI: 10.3390/molecules27196690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
The first fluorescent ferrociphenol derivative (P797) has been synthesized via McMurry cross-coupling followed by copper-catalyzed [3 + 2] azide-alkyne cycloaddition of the fluorescent group coumarin. Cyclic voltammograms of P797 exhibit either a monoelectronic oxidation wave ascribed to the ferrocene Fe(II) → Fe(III) conversion or a three-electron oxidation process in the presence of a base, leading to a Fe(III) quinone methide adduct. This general sequence is consistent with those previously described for non-fluorescent ferrociphenols. Furthermore, the fluorescence properties of P797 and its oxidized intermediates appear to strongly depend on the redox state of the ferrocene group. Indeed, electrochemical generation of Fe(III) (ferrocenium) states markedly increases the fluorescence emission intensity. In contrast, the emission of the Fe(II) (ferrocene) states is partially quenched by photoinduced electron transfer (PET) from the Fe(II) donor to the coumarin acceptor and by concentration-dependent self-quenching. Owing to its switchable fluorescence properties, complex P797 could represent an innovative and useful tool to study the biodistribution and the redox state of ferrocifens in cancer cells.
Collapse
Affiliation(s)
- Charles Fayolle
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université CNRS, 75005 Paris, France
| | - Pascal Pigeon
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
- ENSCP Chimie ParisTech, PSL University, 75005 Paris, France
| | - Nathalie Fischer-Durand
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
| | - Olivier Buriez
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université CNRS, 75005 Paris, France
| | - Anne Vessières
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
| | - Eric Labbé
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université CNRS, 75005 Paris, France
| |
Collapse
|