Tian L, Fu M. The relationship between high density lipoprotein subclass profile and apolipoprotein concentrations.
J Endocrinol Invest 2011;
34:461-72. [PMID:
21747218 DOI:
10.1007/bf03346714]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The HDL fraction in human plasma is heterogeneous in terms of size, shape, composition, and surface charge. The HDL subclasses contents were quantified by 2-dimensional non-denaturing gel electrophoresis, immunoblotting, and image analysis. This research review systematically analyzed the relationship between the contents of HDL subclasses and the concentrations and ratios of the 5 major plasma apolipoproteins (apo). As the concentration of apoA-I increases, the contents of all HDL subclasses increase significantly. The most significant association was observed between large-sized HDL2b contents and apoA-I. ApoA-II played a dual function in the contents of HDL subclasses, and both small-sized HDL3b and HDL3a and large-sized HDL2b tended to increase with apoA-II concentration. An increase in the concentrations of apoC-II, C-III, and B-100 resulted in higher levels of small-sized HDL particles and lower levels of large-sized HDL particles. Plasma apoB- 100, apoC-II, and apoC-III appear to play a coordinated role in assembly of HDL particles and the determination of their contents. Higher concentrations of apoA-I could inhibit the reduction in content of large-sized HDL2b effected by apoB-100, C-II, and C-III. The preβ1-HDL contents increased significantly and those of HDL2b declined progressively with an increased apoB-100/apoA-I or a decreased apoC-III/apoC-II ratio. In summary, each apo has distinct but interrelated roles in HDL particle generation and metabolism. ApoA-I and apoC-II concentrations are independent determinants of HDL subtypes in circulation and apoA-I levels might be a more powerful factor to influence HDL subclasses distribution. Moreover, apoB- 100/apoA-I ratio could reliably and sensitively reflect the HDL subclass profile.
Collapse