2
|
Nguyen VPT, Stewart JD, Ioannou I, Allais F. Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery From Biomass, and Biological Activities. Front Chem 2021; 9:664602. [PMID: 34055737 PMCID: PMC8161205 DOI: 10.3389/fchem.2021.664602] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Sinapic acid (SinA) and corresponding esters are secondary metabolites abundantly found in plants of Brassica family. Belonging to the family of p-hydroxycinnamic acids, SinA and its esters analogues are present in different plant parts and involved in multiple biological processes in planta. Moreover, these metabolites are also found in relatively large quantities in agro-industrial wastes. Nowadays, these metabolites are increasingly drawing attention due to their bioactivities which include antioxidant, anti-microbial, anti-cancer and UV filtering activities. As a result, these metabolites find applications in pharmaceutical, cosmetic and food industries. In this context, this article reviews innate occurrence, biosynthesis, accessibility via chemical synthesis or direct extraction from agro-industrial wastes. Biological activities of SinA and its main corresponding esters will also be discussed.
Collapse
Affiliation(s)
- V P Thinh Nguyen
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France.,Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Jon D Stewart
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Irina Ioannou
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle, France.,Department of Chemistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Bhuyan DJ, Vuong QV, Chalmers AC, van Altena IA, Bowyer MC, Scarlett CJ. Development of the ultrasonic conditions as an advanced technique for extraction of phenolic compounds from Eucalyptus robusta. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1250777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Deep Jyoti Bhuyan
- Nutrition Food & Health Research Group, University of Newcastle, Ourimbah, NSW, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Quan V. Vuong
- Nutrition Food & Health Research Group, University of Newcastle, Ourimbah, NSW, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Anita C. Chalmers
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Ian A. van Altena
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Michael C. Bowyer
- Nutrition Food & Health Research Group, University of Newcastle, Ourimbah, NSW, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher J. Scarlett
- Nutrition Food & Health Research Group, University of Newcastle, Ourimbah, NSW, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
6
|
Marchand L, Pelosi C, González-Centeno MR, Maillard A, Ourry A, Galland W, Teissedre PL, Bessoule JJ, Mongrand S, Morvan-Bertrand A, Zhang Q, Grosbellet C, Bert V, Oustrière N, Mench M, Brunel-Muguet S. Trace element bioavailability, yield and seed quality of rapeseed (Brassica napus L.) modulated by biochar incorporation into a contaminated technosol. CHEMOSPHERE 2016; 156:150-162. [PMID: 27174828 DOI: 10.1016/j.chemosphere.2016.04.129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Rapeseed (Brassica napus L.) is a Cd/Zn-accumulator whereas soil conditioners such as biochars may immobilize trace elements. These potentially complementary soil remediation options were trialed, singly and in combination, in a pot experiment with a metal(loid)-contaminated technosol. METHODS The technosol [total content in mg kg(-1) Zn 6089, Cd 9.4, Cu 110, and Pb 956] was either amended (2% w/w) or not with a poultry manure-derived biochar. Rapeseed was cultivated for both soil treatments during 24 weeks up to harvest under controlled conditions. RESULTS Biochar incorporation into the technosol promoted the As, Cd, Cu, Mo, Ni, Pb and Zn solubility. It decreased foliar B, Cu and Mo concentrations, and Mo concentration in stems, pericarps and seeds. But, it did not impact neither the biomass of aerial rapeseed parts (except a decrease for seeds), nor their C (except a decrease for stems), seed fatty acid, seed starch and soluble sugar contents, and antioxidant capacity in both leaves and seeds. Biochar amendment increased the phytoextraction by aerial plant parts for K, P, and S, reduced it for N, Ca, B, Mo, Ni and Se, whereas it remained steady for Mg, Zn, Fe, Mn, Cu, Cd and Co. CONCLUSIONS The biochar incorporation into this technosol did not promote Cd, Cu and Zn phytoextraction by rapeseed and its potential oilseed production, but increased the solubility of several metal(loid)s. Here Zn and Cd concentrations in the soil pore water were decreased by rapeseed, showing the feasibility to strip available soil Zn and Cd in combination with seed production.
Collapse
Affiliation(s)
- Lilian Marchand
- INRA, UMR 1202 BIOGECO, 69 Route d'Arcachon, FR-33612, Cestas cedex, France; Université de Bordeaux, UMR 1202 BIOGECO, Bât B2, Allée G. St-Hilaire, CS50023, FR-33615, Pessac cedex, France
| | - Céline Pelosi
- INRA, UMR 1402 ECOSYS, F-78026, Versailles cedex, France; AgroParisTech, UMR 1402 ECOSYS, F-78850, Thiverval-Grignon, France
| | - María Reyes González-Centeno
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, Unité de recherche Oenologie, EA 4577, USC 1366 INRA, IPB, 210, chemin de Leysotte, CS 50008, 33882, Villenave d'Ornon cedex, France
| | - Anne Maillard
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032, Caen Cedex 5, France; Normandie Université, 14032, Caen, France; UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032, Caen Cedex 5, France
| | - Alain Ourry
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032, Caen Cedex 5, France; Normandie Université, 14032, Caen, France; UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032, Caen Cedex 5, France
| | - William Galland
- Université de Bordeaux, UMR 1202 BIOGECO, Bât B2, Allée G. St-Hilaire, CS50023, FR-33615, Pessac cedex, France
| | - Pierre-Louis Teissedre
- Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, Unité de recherche Oenologie, EA 4577, USC 1366 INRA, IPB, 210, chemin de Leysotte, CS 50008, 33882, Villenave d'Ornon cedex, France
| | - Jean-Jacques Bessoule
- INRA, UMR 5200 CNRS-Université Bordeaux, Laboratoire de Biogenèse Membranaire, 71, avenue Edouard Bourlaux, 33883, Villenave-d'Ornon Cedex, France
| | - Sébastien Mongrand
- INRA, UMR 5200 CNRS-Université Bordeaux, Laboratoire de Biogenèse Membranaire, 71, avenue Edouard Bourlaux, 33883, Villenave-d'Ornon Cedex, France
| | - Annette Morvan-Bertrand
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032, Caen Cedex 5, France; Normandie Université, 14032, Caen, France; UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032, Caen Cedex 5, France
| | - Qinzhong Zhang
- Key Laboratory of Agricultural Environment, Ministry of Agriculture, Sino-Australian Joint Laboratory for Sustainable Agro-Ecosystems, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Claire Grosbellet
- Florentaise, La grande Gâcherie, 44850, Saint Mars du Désert, France
| | - Valérie Bert
- INERIS, Technologies and Sustainable and Clean Processes, Parc Technologique Alata, BP2, 60550, Verneuil en Halatte, France
| | - Nadège Oustrière
- INRA, UMR 1202 BIOGECO, 69 Route d'Arcachon, FR-33612, Cestas cedex, France; Université de Bordeaux, UMR 1202 BIOGECO, Bât B2, Allée G. St-Hilaire, CS50023, FR-33615, Pessac cedex, France
| | - Michel Mench
- INRA, UMR 1202 BIOGECO, 69 Route d'Arcachon, FR-33612, Cestas cedex, France; Université de Bordeaux, UMR 1202 BIOGECO, Bât B2, Allée G. St-Hilaire, CS50023, FR-33615, Pessac cedex, France
| | - Sophie Brunel-Muguet
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032, Caen Cedex 5, France; Normandie Université, 14032, Caen, France; UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032, Caen Cedex 5, France
| |
Collapse
|