1
|
Garcia-Quinto E, Guisan JM, Fernandez-Lorente G. Use of Ionic Liquids in the Enzymatic Synthesis of Structured Docosahexaenoic Acid Lyso-Phospholipids. Molecules 2025; 30:728. [PMID: 39942830 PMCID: PMC11819881 DOI: 10.3390/molecules30030728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Recent studies have shown that DHA supplementation in the form of phospholipids effectively increases DHA levels in the brain, including DHA lysophospholipids. This research explores a method to produce DHA lysophosphatidylcholine (DHA-LPC) using lipases and phospholipases immobilized on Immobeads-C18 with maximal enzyme loading. The esterification of glycerophosphatidylcholine (GPC) and DHA was studied with ionic liquids as alternatives to traditional solvents, with 1-methyl-3-octylimidazolium tetrafluoroborate (MOIM-BF4) providing the highest yield due to its ability to increase the solubility of GPC. The reaction parameters were modified to establish a molar ratio of GPC to DHA of 1/10. A maximum DHA-LPC yield of 80% was achieved in 48 h, with a formation rate of 20.06 (mg/mL.h) × g. The Quara® LowP biocatalyst (QlowP-C18) maintained 100% activity during the first three cycles and produced 788 mg of DHA lysophospholipid. The use of 50% MOIM-BF4 improved the stability of the biocatalyst, and NMR confirmed that the product was the sn1-DHA-LPC isomer.
Collapse
Affiliation(s)
- Ernestina Garcia-Quinto
- Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, UAM Campus, Cantoblanco, 28049 Madrid, Spain;
| | - Jose M. Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP, CSIC), Marie Curie, 2, UAM Campus, Cantoblanco, 28049 Madrid, Spain;
| | - Gloria Fernandez-Lorente
- Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, UAM Campus, Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|
2
|
Ahmad S, Singh A, Akram W, Upadhyay A, Abrol GS. Algal lipids: A review on current status and future prospects in food processing. J Food Sci 2025; 90:e17618. [PMID: 39786345 DOI: 10.1111/1750-3841.17618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The consumer demand for functional foods derived from natural sources has been enhanced due to health-promoting effects. Algae are widely available globally as a sustainable source of proteins, lipids, and carbohydrates. Algal lipids are underexplored natural sources that exhibit several nutraceutical effects and applications in fortification, cosmetics, and pharmaceuticals. Both macro- and microalgae are composed of high-quality lipids. These latter involve polar lipids, nonpolar lipids, and essential fatty acids. Therefore, this review aimed to bring out knowledge on the chemistry of various lipids isolated and identified from micro- and macroalgae. Further, their extraction using traditional thermal (solid-liquid, and liquid-liquid) and advanced nonthermal (supercritical fluid, microwave-, ultrasound-, and enzyme-assisted) techniques has been explored. Along with this, bioactivities of algal lipids have been discussed. This study explored algal lipids in advancing sustainable food processing technologies that contribute positively to environmental sustainability and global health, in line with United Nations Sustainable Development GroupUnited Nations Sustainable Development Group UNSDGs.
Collapse
Affiliation(s)
- Sameer Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Amit Singh
- Department of Postharvest Technology, Banda University of Agriculture & Technology, Banda, Uttar Pradesh, India
| | - Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management Kundli, Sonipat, Haryana, India
| | - Ghan Shyam Abrol
- Department of Post-Harvest Technology, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
3
|
Progress and perspectives of enzymatic preparation of human milk fat substitutes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:118. [PMCID: PMC9635142 DOI: 10.1186/s13068-022-02217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Human milk fat substitutes (HMFS) with triacylglycerol profiles highly similar to those of human milk fat (HMF) play a crucial role in ensuring the supply in infant nutrition. The synthesis of HMFS as the source of lipids in infant formula has been drawing increasing interest in recent years, since the rate of breastfeeding is getting lower. Due to the mild reaction conditions and the exceptionally high selectivity of enzymes, lipase-mediated HMFS preparation is preferred over chemical catalysis especially for the production of lipids with desired nutritional and functional properties. In this article, recent researches regarding enzymatic production of HMFS are reviewed and specific attention is paid to different enzymatic synthetic route, such as one-step strategy, two-step catalysis and multi-step processes. The key factors influencing enzymatic preparation of HMFS including the specificities of lipase, acyl migration as well as solvent and water activity are presented. This review also highlights the challenges and opportunities for further development of HMFS through enzyme-mediated acylation reactions.
Collapse
|
4
|
Zhou J, Lee YY, Mao Y, Wang Y, Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods 2022; 11:2400. [PMID: 36010399 PMCID: PMC9407428 DOI: 10.3390/foods11162400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Structured lipids (SLs) refer to a new type of functional lipid obtained by modifying natural triacylglycerol (TAG) through the restructuring of fatty acids, thereby altering the composition, structure, and distribution of fatty acids attached to the glycerol backbones. Due to the unique functional characteristics of SLs (easy to absorb, low in calories, reduced serum TAG, etc.), there is increasing interest in the research and application of SLs. SLs were initially prepared using chemical methods. With the wide application of enzymes in industries and the advantages of enzymatic synthesis (mild reaction conditions, high catalytic efficiency, environmental friendliness, etc.), synthesis of SLs using lipase has aroused great interest. This review summarizes the reaction system of SL production and introduces the enzymatic synthesis and application of some of the latest SLs discussed/developed in recent years, including medium- to long-chain triacylglycerol (MLCT), diacylglycerol (DAG), EPA- and DHA-enriched TAG, human milk fat substitutes, and esterified propoxylated glycerol (EPG). Lastly, several new ways of applying SLs (powdered oil, DAG plastic fat, inert gas spray oil, and emulsion) in the future food industry are also highlighted.
Collapse
Affiliation(s)
- Jun Zhou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yilin Mao
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| |
Collapse
|
5
|
Castejón N, Señoráns FJ. Integrated Green and Enzymatic Process to Produce Omega‐3 Acylglycerols from
Echium plantagineum
Using Immobilized Lipases. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natalia Castejón
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Francisco Javier Señoráns
- Healthy‐Lipids Group, Sección Departamental de Ciencias de la Alimentación, Faculty of Sciences Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
6
|
Abstract
The search for economic and sustainable sources of polyunsaturated fatty acids (PUFAs) within the framework of the circular economy is encouraged by their proven beneficial effects on health. The extraction of monkfish liver oil (MLO) for the synthesis of omega-3 ethyl esters was performed to evaluate two blending systems and four green solvents in this work. Moreover, the potential solubility of the MLO in green solvents was studied using the predictive simulation software COnductor-like Screening MOdel for Realistic Solvents (COSMO-RS). The production of ethyl esters was performed by one or two-step reactions. Novozym 435, two resting cells (Aspergillus flavus and Rhizopus oryzae) obtained in our laboratory and a mix of them were used as biocatalysts in a solvent-free system. The yields for Novozym 435, R. oryzae and A. flavus in the one-step esterification were 63, 61 and 46%, respectively. The hydrolysis step in the two-step reaction led to 83, 88 and 93% of free fatty acids (FFA) for Novozym 435, R. oryzae and A. flavus, respectively. However, Novozym 435 showed the highest yield in the esterification step (85%), followed by R. oryzae (65%) and A. flavus (41%). Moreover, selectivity of polyunsaturated fatty acids of R. oryzae lipase was evidenced as it slightly esterified docosahexaenoic acid (DHA) in all the esterification reactions tested.
Collapse
|
7
|
Ji S, Wu J, Xu F, Wu Y, Xu X, Gao H, Ju X, Xiong W, Wang L. Synthesis, Purification, and Characterization of a Structured Lipid Based on Soybean Oil and Coconut Oil and Its Applications in Curcumin‐Loaded Nanoemulsions. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shengyang Ji
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Jin Wu
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Feiran Xu
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Ying Wu
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Xiaoying Xu
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Houbin Gao
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd No.118 Gaodong Road, Pudong New District Shanghai 200137 P. R. China
| | - Xingrong Ju
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Wenfei Xiong
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| | - Lifeng Wang
- College of Food Science and Engineering Collaborative Innovation Center for Modern Grain Circulation and Safety Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics No. 3 Wenyuan Road Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
8
|
Synthesis of DHA/EPA Ethyl Esters via Lipase-Catalyzed Acidolysis Using Novozym® 435: A Kinetic Study. Catalysts 2020. [DOI: 10.3390/catal10050565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DHA/EPA ethyl ester is mainly used in the treatment of arteriosclerosis and hyperlipidemia. In this study, DHA+EPA ethyl ester was synthesized via lipase-catalyzed acidolysis of ethyl acetate (EA) with DHA+EPA concentrate in n-hexane using Novozym® 435. The DHA+EPA concentrate (in free fatty acid form), contained 54.4% DHA and 16.8% EPA, was used as raw material. A central composite design combined with response surface methodology (RSM) was used to evaluate the relationship between substrate concentrations and initial rate of DHA+EPA ethyl ester production. The results indicated that the reaction followed the ordered mechanism and as such, the ordered mechanism model was used to estimate the maximum reaction rate (Vmax) and kinetic constants. The ordered mechanism model was also combined with the batch reaction equation to simulate and predict the conversion of DHA+EPA ethyl ester in lipase-catalyzed acidolysis. The integral equation showed a good predictive relationship between the simulated and experimental results. 88–94% conversion yields were obtained from 100–400 mM DHA+EPA concentrate at a constant enzyme activity of 200 U, substrate ratio of 1:1 (DHA+EPA: EA), and reaction time of 300 min.
Collapse
|