1
|
Qi Y, Ayinla M, Clifford S, Ramström O. Spontaneous and Selective Macrocyclization in Nitroaldol Reaction Systems. J Org Chem 2023. [PMID: 38154053 DOI: 10.1021/acs.joc.3c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Through a dynamic polymerization and self-sorting process, a range of lowellane macrocycles have been efficiently generated in nitroaldol systems composed of aromatic dialdehydes and aliphatic or aromatic dinitroalkanes. All identified macrocycles show a composition of two repeating units, resulting in tetra-β-nitroalcohols of different structures. The effects of the building block structure on the macrocyclization process have been demonstrated, and the influence from the solvent has been explored. In general, the formation of the lowellanes was amplified in response to phase-change effects, although solution-phase structures were, in some cases, favored.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Stephen Clifford
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
2
|
Qi Y, Ramström O. Polymerization, Stimuli-induced Depolymerization, and Precipitation-driven Macrocyclization in a Nitroaldol Reaction System. Chemistry 2022; 28:e202201863. [PMID: 35971799 PMCID: PMC9826525 DOI: 10.1002/chem.202201863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 01/11/2023]
Abstract
Dynamic covalent polymers of different topology have been synthesized from an aromatic dialdehyde and α,ω-dinitroalkanes via the nitroaldol reaction. All dinitroalkanes yielded dynamers with the dialdehyde, where the length of the dinitroalkane chain played a vital role in determining the structure of the final products. For longer dinitroalkanes, linear dynamers were produced, where the degree of polymerization reached a plateau at higher feed concentrations. In the reactions involving 1,4-dinitrobutane and 1,5-dinitropentane, specific macrocycles were formed through depolymerization of the linear chains, further driven by precipitation. At lower temperature, the same systemic self-sorting effect was also observed for the 1,6-dinitrohexane-based dynamers. Moreover, the dynamers showed a clear adaptive behavior, displaying depolymerization and rearrangement of the dynamer chains in response to alternative building blocks as external stimuli.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave.LowellMA 01854USA
| | - Olof Ramström
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave.LowellMA 01854USA
- Department of Chemistry and Biomedical SciencesLinnaeus UniversitySE-39182KalmarSweden
| |
Collapse
|
3
|
Crystallization- and Metal-Driven Selection of Discrete Macrocycles/Cages and Their Metallosupramolecular Polymers from Dynamic Systemic Networks. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible imine- and metal-coordination reactions are dynamic enough to produce complex libraries of macrocycles, cages, and supramolecular polymers in solution, from which amplification effects have been identified in solution or during crystallization in response to ligand- and metal-driven selection modes. Crystallization-driven selection can lead to the amplification of unexpected metallosupramolecular architectures. The addition of Ag+ triggered the change of the optimal components, so that the crystallization process showed different ligand preferences than in solution. The most packed constituents are amplified in the solid state, taking into account the optimal coordination of metal ions together with non-specific non-covalent interactions between the macrocycle packed in dimers or trimers in the solid state.
Collapse
|
4
|
De Jesús Cruz P, Johnson JS. Crystallization-Enabled Henry Reactions: Stereoconvergent Construction of Fully Substituted [ N]-Asymmetric Centers. J Am Chem Soc 2022; 144:15803-15811. [PMID: 35980759 PMCID: PMC9469918 DOI: 10.1021/jacs.2c06669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrasubstituted stereogenic carbon centers bearing a nitrogen substituent represent important motifs in medicinal chemistry and natural products; therefore, the development of efficient methods for the stereoselective synthesis of this class of compounds continues to be an important problem. This article describes stereoconvergent Henry reactions of γ,γ-disubstituted nitroalkanes to deliver highly functionalized building blocks containing up to five contiguous stereogenic centers including a fully substituted [N]-asymmetric center. Henry reactions of higher order nitroalkanes are often characterized by their reversibility and minimal accompanying thermodynamic stereocontrol. In contrast, mechanistic studies for the present case suggest a scenario in which reversibility is productively leveraged through crystallization-based stereocontrol, thereby enabling the efficient sequential π-additions of readily accessible starting materials to assemble complex acyclic stereoarrays.
Collapse
Affiliation(s)
- Pedro De Jesús Cruz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
5
|
Schaufelberger F, Ramström O. Activated Self-Resolution and Error-Correction in Catalytic Reaction Networks*. Chemistry 2021; 27:10335-10340. [PMID: 33780566 DOI: 10.1002/chem.202100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 01/02/2023]
Abstract
Understanding the emergence of function in complex reaction networks is a primary goal of systems chemistry and origin-of-life studies. Especially challenging is to create systems that simultaneously exhibit several emergent functions that can be independently tuned. In this work, a multifunctional complex reaction network of nucleophilic small molecule catalysts for the Morita-Baylis-Hillman (MBH) reaction is demonstrated. The dynamic system exhibited triggered self-resolution, preferentially amplifying a specific catalyst/product set out of a many potential alternatives. By utilizing selective reversibility of the products of the reaction set, systemic thermodynamically driven error-correction could also be introduced. To achieve this, a dynamic covalent MBH reaction based on adducts with internal H-transfer capabilities was developed. By careful tuning of the substituents, rate accelerations of retro-MBH reactions of up to four orders of magnitude could be obtained. This study thus demonstrates how efficient self-sorting of catalytic systems can be achieved through an interplay of several complex emergent functionalities.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of Chemistry, KTH - Royal Institute of Technology Teknikringen 36, 10044 Stockholm (Sweden)
| | - Olof Ramström
- Department of Chemistry, KTH - Royal Institute of Technology Teknikringen 36, 10044 Stockholm (Sweden).,Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA.,Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
6
|
Kolarovič A, Jakubec P. State of the Art in Crystallization‐Induced Diastereomer Transformations. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Andrej Kolarovič
- Department of Chemistry Faculty of Education Trnava University Priemyselná 4 918 43 Trnava Slovakia
| | - Pavol Jakubec
- Institute of Organic Chemistry Catalysis and Petrochemistry Slovak University of Technology Radlinského 9 812 37 Bratislava Slovakia
| |
Collapse
|
7
|
Biocatalytic Approach to Chiral β-Nitroalcohols by Enantioselective Alcohol Dehydrogenase-Mediated Reduction of α-Nitroketones. Catalysts 2018. [DOI: 10.3390/catal8080308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chiral β-nitroalcohols are important building blocks in organic chemistry. The synthetic approach that is based on the enzyme-mediated reduction of α-nitroketones has been scarcely considered. In this work, the use of commercial alcohol dehydrogenases (ADHs) for the reduction of aromatic and aliphatic nitroketones is investigated. High conversions and enantioselectivities can be achieved with two specific ADHs, affording either the (S) or (R)-enantiomer of the corresponding nitroalcohols. The reaction conditions are carefully tuned to preserve the stability of the reduced product, and to avoid the hydrolytic degradation of the starting substrate. The further manipulation of the enantioenriched nitroalcohols into Boc-protected amminoalcohols is also described.
Collapse
|
8
|
Lansakara AI, Mariappan SVS, Pigge FC. Alkylidene Dihydropyridines As Synthetic Intermediates: Model Studies toward the Synthesis of the Bis(piperidine) Alkaloid Xestoproxamine C. J Org Chem 2016; 81:10266-10278. [PMID: 27379459 DOI: 10.1021/acs.joc.6b01269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Results of model studies demonstrating a stereoselective synthetic route to tricyclic analogues of the bis(piperidine) alkaloid xestoproxamine C are presented. Dearomatization of a tricyclic pyridine derivative to afford an alkylidene dihydropyridine (anhydrobase) intermediate followed by catalytic heterogeneous hydrogenation was used to install the correct relative stereochemistry about the bis(piperidine) ring system. Other key features of these model studies include development of an efficient ring-closing metathesis procedure to prepare macrocyclic derivatives of 3,4-disusbstituted pyridines, intramolecular cyclizations of alkylidene dihydropyridines to establish pyridine-substituted pyrrolidines and piperidines, successful homologation of pyridine-4-carboxaldehydes using formaldehyde dimethyl thioacetal monoxide (FAMSO), and application of B-alkyl Suzuki coupling to assemble substituted pyridines.
Collapse
Affiliation(s)
- Ashabha I Lansakara
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | | | - F Christopher Pigge
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
9
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
10
|
Sakulsombat M, Zhang Y, Ramström O. Dynamic Systemic Resolution. CONSTITUTIONAL DYNAMIC CHEMISTRY 2011; 322:55-86. [DOI: 10.1007/128_2011_203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|