1
|
Saavedra CJ, Carro C, Hernández D, Boto A. Conversion of “Customizable Units” into N-Alkyl Amino Acids and Generation of N-Alkyl Peptides. J Org Chem 2019; 84:8392-8410. [DOI: 10.1021/acs.joc.9b00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
- BIOSIGMA, Antonio Domı́nguez Alfonso 16, 38003-Sta. Cruz de Tenerife, Tenerife, Spain
| | - Carmen Carro
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
- BIOSIGMA, Antonio Domı́nguez Alfonso 16, 38003-Sta. Cruz de Tenerife, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
2
|
Sharma A, Kumar A, Abdel Monaim SAH, Jad YE, El-Faham A, de la Torre BG, Albericio F. N-methylation in amino acids and peptides: Scope and limitations. Biopolymers 2018. [PMID: 29528112 DOI: 10.1002/bip.23110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Active pharmaceutical ingredients (APIs) can be divided into two types, namely chemical and biological entities. Traditionally, the former has been associated with the so-called small molecules. The revival of peptides in pharmaceutical industry results from their importance in many biological roles. However, low metabolic stability and the lack of oral availability of most peptides is the main drawback for peptide to fulfill that paradigmatic situation. In this regard, efforts are being channeled into addressing this issue by introducing restrictions into the flexible peptide backbone, mainly through N-methyl amino acids (NMAAs) or development of small cyclic peptides. In many cases, both the above restrictions are combined with the aim to enhance oral availability. The synthesis of NMAAs is complex and their introduction into the peptide chain brings additional synthetic challenges and also sometimes leads to side-reactions. Here we discuss the most efficient methods for the synthesis of NMAAs (either in solution or in solid phase) and also their introduction into peptide sequences. Special attention is also given to the detection of side reactions and the most efficient way to prevent them.
Collapse
Affiliation(s)
- Anamika Sharma
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Ashish Kumar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Shimaa A H Abdel Monaim
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Yahya E Jad
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, Alexandria, 21321, Egypt
| | - Beatriz G de la Torre
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Fernando Albericio
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.,Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona, 08028, Spain
| |
Collapse
|
3
|
Sletten ET, Ramadugu SK, Nguyen HM. Utilization of bench-stable and readily available nickel(II) triflate for access to 1,2-cis-2-aminoglycosides. Carbohydr Res 2016; 435:195-207. [PMID: 27816838 DOI: 10.1016/j.carres.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
The utilization of substoichiometric amounts of commercially available nickel(II) triflate as an activator in the reagent-controlled glycosylation reaction for the stereoselective construction of biologically relevant targets containing 1,2-cis-2-amino glycosidic linkages is reported. This straightforward and accessible methodology is mild, operationally simple and safe through catalytic activation by readily available Ni(OTf)2 in comparison to systems employing our previously in-house prepared Ni(4-F-PhCN)4(OTf)2. We anticipate that the bench-stable and inexpensive Ni(OTf)2, coupled with little to no extra laboratory training to set up the glycosylation reaction and no requirement of specialized equipment, should make this methodology be readily adopted by non-carbohydrate specialists. This report further highlights the efficacy of Ni(OTf)2 to prepare several bioactive motifs, such as blood type A-type V and VI antigens, heparin sulfate disaccharide repeating unit, aminooxy glycosides, and α-GalNAc-Serine conjugate, which cannot be achieved in high yield and α-selectivity utilizing in-house prepared Ni(4-F-PhCN)4(OTf)2 catalyst. The newly-developed protocol eliminates the need for the synthesis of Ni(4-F-PhCN)4(OTf)2 and is scalable and reproducible. Furthermore, computational simulations in combination with 1H NMR studies analyzed the effects of various solvents on the intramolecular hydrogen bonding network of tumor-associated mucin Fmoc-protected GalNAc-threonine amino acid antigen derivative, verifying discrepancies found that were previously unreported.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA
| | | | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|