1
|
Parmar M, Vala RM, Patel HM. Importance of Hybrid Catalysts toward the Synthesis of 5 H-Pyrano[2,3- d]pyrimidine-2-ones/2,4-diones (Thiones). ACS OMEGA 2023; 8:1759-1816. [PMID: 36687108 PMCID: PMC9850783 DOI: 10.1021/acsomega.2c05349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The pyranopyrimidine core is a key precursor for medicinal and pharmaceutical industries due to its broader synthetic applications as well as its bioavailability. Among its four possible isomers, we found that 5H-pyrano[2,3-d]pyrimidine scaffolds have a wide range of applicability, and in recent years, they have been intensively investigated, but the development of the main core is found to be more challenging due to its structural existence. In this review article, we cover all of the synthetic pathways that are employed for the development of substituted 4-aryl-octahydropyrano/hexahydrofuro[2,3-d]pyrimidin-2-one (thiones) and 5-aryl-substituted pyrano[2,3-d]pyrimidindione (2-thiones) derivatives through a one-pot multicomponent reaction using diversified hybrid catalysts such as organocatalysts, metal catalysts, ionic liquid catalysts, nanocatalysts, green solvents, catalyst-/solvent-free conditions, and miscellaneous catalysts as well as the mechanism and recyclability of the catalysts. This review mainly focuses on the application of hybrid catalysts (from 1992 to 2022) for the synthesis of 5H-pyrano[2,3-d]pyrimidine scaffolds. This review will definitely attract the world's leading researchers to utilize broader catalytic applications for the development of lead molecules.
Collapse
Affiliation(s)
- Mehul
P. Parmar
- Department of Chemistry, Sardar Patel University, Vallabh
Vidyanagar 388 120, Gujarat, India
| | - Ruturajsinh M. Vala
- Department of Chemistry, Sardar Patel University, Vallabh
Vidyanagar 388 120, Gujarat, India
| | - Hitendra M. Patel
- Department of Chemistry, Sardar Patel University, Vallabh
Vidyanagar 388 120, Gujarat, India
| |
Collapse
|
2
|
Lu F, Chen Y, Song X, Yu C, Li T, Zhang K, Yao C. NHC-Catalyzed [2 + 4] Annulation of Alkynyl Ester with Chalcone. J Org Chem 2022; 87:6902-6909. [PMID: 35486449 DOI: 10.1021/acs.joc.2c00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An NHC-catalyzed [2 + 4] cyclization of alkynyl ester with α,β-unsaturated ketone to form a pyran scaffold was developed successfully. The cheap and easily available starting materials, mild reaction conditions, moderate to excellent yields, and high atom economy make this strategy attractive for the syntheses of highly substituted 4H-pyran derivatives.
Collapse
Affiliation(s)
- Fangfang Lu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yangxu Chen
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xue Song
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Tuanjie Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
3
|
Sharma A, Nagaraju K, Rao GA, Gurubrahamam R, Chen K. Asymmetric Organocatalysis of Activated Alkynes and Enynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Akashdeep Sharma
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Koppanathi Nagaraju
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Gunda Ananda Rao
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| | - Ramani Gurubrahamam
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Kwunmin Chen
- Department of Chemistry National Taiwan Normal University Taipei 11677 Taiwan
| |
Collapse
|
4
|
Nagaraju P, Reddy PN, Padmaja P, Ugale VG. Microwave-Assisted Synthesis of Thiazole/Benzothiazole Fused Pyranopyrimidine Derivatives and Evaluation of their Biological Activity. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617999200517130138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new class of phenylbenzo[4,5]thiazolo[3,2-a]pyrano[2,3-d]pyrimidin-5-one and pyrano[
2,3-d]thiazolo[3,2-a]pyrimidine-5-one derivatives have been synthesized via one-pot threecomponent
reaction of 2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one and 7-hydroxy-5Hthiazolo[
3,2-a]pyrimidin-5-one with various aromatic aldehydes and (E)-N-methyl-1-(methylthio)-2-
nitroethenamine under microwave irradiation. This transformation involves the formation of thiazole or
benzothiazole fused pyranopyrimidinone ring by the formation of two C-C bonds and one C-O bond in
a single synthetic operation. This rapid one-pot reaction does not require a catalyst, it is solvent-free,
avoids chromatographic purification, and provides good yields. The synthesized compounds were
evaluated for their antiproliferative activity against four cancer cell lines, namely DU 145 (prostate
cancer), MDA-MB-231 (breast cancer), Hela (Human cervical cancer), HT-29 (Human colon cancer)
and HEK293 (human embryonic kidney cells). The results demonstrated that synthesized compounds
were selective in its cytotoxicity to cancer cells compared to normal HEK293 cells. Compound 12h
exhibited the most potent antiproliferative activity against the tested cell lines, while other test compounds
showed weak or moderate antiproliferative activity, among them 12d, 12e and 14d displayed
showed IC50 values in the low micromolar range. Molecular docking studies revealed that these active
heterocyclic molecules bind selectively in the colchicine binding site of tubulin polymer.
Collapse
Affiliation(s)
- Pallava Nagaraju
- Department of Chemistry, School of Science, Gitam University, Hyderabad (T.S), 502 329,India
| | | | - Pannala Padmaja
- Centre for Semio Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad,India
| | - Vinod G. Ugale
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Maharashtra,India
| |
Collapse
|
5
|
Bao X, Ren J, Yang Y, Ye X, Wang B, Wang H. 2-Activated 1,3-enynes in enantioselective synthesis. Org Biomol Chem 2020; 18:7977-7986. [PMID: 32996970 DOI: 10.1039/d0ob01614d] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid enantioselective synthesis of valuable building blocks and pharmaceutically important compounds from easily accessible precursors is one of the major areas of focus in organic chemistry. In this context, 2-activated 1,3-enyne has emerged as a powerful synthon in recent years for the efficient synthesis of enantioenriched furans, allenes, 4-H-pyrans, and 4-isoxazolines, which are privileged scaffolds in bioactive compounds and natural products. This review will cover the history of the development of 2-activated 1,3-enyne in enantioselective synthesis along with the corresponding mechanisms, which may motivate further development in this area to forge more complex and valuable molecules.
Collapse
Affiliation(s)
- Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jinhui Ren
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yang Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 112024, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Facile catalyst-free synthesis of perfluoroalkylated cis-spiropyrimidine-5,1′-quinolizines and pyrano[2,3-d]pyrimidines. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Abstract
Since the beginning of the 20th century, numerous research efforts made elegant use of barbituric acid derivatives as building blocks for the elaboration of more complex and useful molecules in the field of pharmaceutical chemistry and material sciences. However, the construction of chiral scaffolds by the catalytic enantioselective transformation of barbituric acid and derivatives has only emerged recently. The specific properties of these rather planar scaffolds, which also encompass either a high Brønsted acidity concerning the native barbituric acid or the marked electrophilic character of alkylidene barbituric acids, required specific developments to achieve efficient asymmetric processes. This review covers the enantioselective catalytic reactions developed for barbituric acid platforms using an organocatalytic and metal-based enantioselective sequences. These achievements currently allow several unique addition and annulation reactions towards the construction of high valued chiral heterocycles from barbituric acid derivatives along with innovative enantioselective developments.
Collapse
|