1
|
Camcı-Eren M, Cinek T, Cihan-Üstündağ G, Özen-Eroğlu G, Yıldırım M, Genç-Akar Ö, Erol-Bozkurt A, Sancar S, Öztay F, Soylu-Eter Ö, Bolkent Ş, Kuruca S, Karalı N. New 2-indolinone-indole hybrid compounds carrying a benzoyl moiety as tyrosine kinase inhibitors. Bioorg Chem 2025; 156:108203. [PMID: 39864371 DOI: 10.1016/j.bioorg.2025.108203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
In this study, new 2-indolinone-indole hybrid compounds (4a-s) carrying a benzoyl moiety were synthesized and their cytotoxic effects were examined against pancreatic (MIA-PaCa-2) and colon (HT-29 and HCT-116) cancer cells by MTT assays. Most of the tested compounds exhibited a better inhibitory activity and safety profile than the reference standard sunitinib malate against MIA-PaCa-2 and HCT-116 cancer cells. Compound 4e displayed the greatest cytotoxic effect on HCT-116 cell with an IC50 value of 0.16 µM and a remarkable selectivity profile (SI > 625). Compound 4g exhibited a selective activity against HCT-116 cancer cell (IC50 = 0.34 µM), with no activity against the other cells at the highest concentrations tested. Compound 4b demonstrated a potent inhibitory activity against MIA-PaCa-2 cell (IC50 = 0.54 µM). General tyrosine kinase inhibitor (TKI) activities and apoptotic effects were examined for compounds 4b, 4e and 4g. The tested compounds were observed to significantly reduce general TK activities in HCT-116 cell and induce apoptosis in HCT-116 and MIA-PaCa-2 cells. Lead compound 4e, the most effective general TKI, was determined to have a specific SRC kinase inhibitor effect in HCT-116 cell and the molecular modelling studies were performed to understand the potential binding mode at the ATP-binding domain of SRC kinase.
Collapse
Affiliation(s)
- Merve Camcı-Eren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University 34116 Istanbul, Turkey.
| | - Tuğçe Cinek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul Health and Technology University 34275 Istanbul, Turkey; Health Sciences Institute, Istanbul University 34126 Istanbul, Turkey
| | - Gökçe Cihan-Üstündağ
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University 34116 Istanbul, Turkey
| | - Güneş Özen-Eroğlu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine 34093 Istanbul, Turkey
| | - Merve Yıldırım
- Department of Biology, Faculty of Science, Istanbul University 34134 Istanbul, Turkey
| | - Öyküm Genç-Akar
- Department of Biology, Faculty of Science, Istanbul University 34134 Istanbul, Turkey
| | - Ayşe Erol-Bozkurt
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University 34093 Istanbul, Turkey
| | - Serap Sancar
- Department of Biology, Faculty of Science, Istanbul University 34134 Istanbul, Turkey
| | - Füsun Öztay
- Department of Biology, Faculty of Science, Istanbul University 34134 Istanbul, Turkey
| | - Özge Soylu-Eter
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fırat University 23119 Elazığ, Turkey
| | - Şehnaz Bolkent
- Department of Biology, Faculty of Science, Istanbul University 34134 Istanbul, Turkey
| | - Serap Kuruca
- Department of Physiology, Faculty of Medicine, Istanbul Atlas University 34408 Istanbul, Turkey
| | - Nilgün Karalı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University 34116 Istanbul, Turkey
| |
Collapse
|
2
|
Das S, Saha R, Bhadra S, Samanta R. Ru(II)-Catalyzed Skeletal Editing of Oxindole with Internal Alkyne To Synthesize C7-Alkylated Indole Derivatives. Org Lett 2024; 26:8051-8056. [PMID: 39284099 DOI: 10.1021/acs.orglett.4c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A Ru(II)-catalyzed skeletal editing of oxindole scaffolds was established to afford C7-alkyl acetate indole derivatives using internal alkyne and alkyl alcohol. The developed method is simple, efficient, and straightforward. The reaction was extended to substrates having wide chemoselective profiles. When unsymmetrical alkynes were used, promising regioselectivity was realized. A preliminary mechanistic study revealed that the reaction pathway proceeded by Ru(II)/Ag(I)-catalyzed amide cleavage and subsequent oxidative annulation.
Collapse
Affiliation(s)
- Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Raktim Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Bhadra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Yu LM, Chen H, Fang W, Cai R, Tao Y, Li Y, Dong H. Recent advances in oxidative dearomatization involving C-H bonds for constructing value-added oxindoles. Org Biomol Chem 2024; 22:7074-7091. [PMID: 39157861 DOI: 10.1039/d4ob00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Exploring three-dimensional chemical space is an important research objective of organic synthetic chemistry. Oxidative dearomatization (ODA) is one of the most important and powerful tools for realizing this goal, because it changes and removes aromatic structures from aromatic compounds to increase levels of saturation and stereoisomerism by direct addition reactions between functional groups with aromatic cores under oxidative conditions. As a hot topic in indole chemistry, the synthetic value of the oxidative dearomatization of indoles has been well recognized and has witnessed rapid development recently, since it could provide convenient and unprecedented access to fabricate high-value-added three-dimensional oxindole skeletons, such as C-quaternary indolones, polycycloindolones and spiroindolones, and be widely applied to the total synthesis of these oxindole alkaloids. Therefore, this article provides a review of recent developments in oxidative dearomatization involving the C-H bonds of indoles. In this article, the features and mechanisms of different types of ODA reactions of indoles are summarized and represented, and asymmetric synthesis methods and their applications are illustrated with examples, and future development trends in this field are predicted at the end.
Collapse
Affiliation(s)
- Le-Mao Yu
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310018, China.
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| | - Haojin Chen
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Wenjing Fang
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Ruonan Cai
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yi Tao
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yong Li
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huaping Dong
- Green Pharmaceuticals and Processes Research Centre, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
4
|
Panda N, Palit K, Mohapatra S. "Cation Pool" generated from DMSO and 1,2-dihaloethanes and their application in organic synthesis. Org Biomol Chem 2024; 22:7103-7110. [PMID: 39175440 DOI: 10.1039/d4ob00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Conventionally, carbenium and onium ions are prepared in the presence of nucleophiles due to their instability and transient nature. The nucleophiles that are unstable or inert to the reaction media cannot be used for reaction with the cationic species to access the desired compounds. To overcome these limitations, developing methods for generating organic cations irreversibly in the absence of nucleophiles is essential. The "cation pool" method developed by Yoshida and co-workers stands out as a reliable strategy to generate and accumulate the reactive cations in solution in the absence of nucleophiles. The cation pool method involves the electrolysis of the substrate in the absence of nucleophiles, usually at low temperature. Moreover, the generation of halogen and chalcogen cations through electrolysis needs extra care because of their low stability. This review covers our effort in generating and accumulating halogen cations as "cation pools", most importantly by simply heating a mixture of dimethyl sulfoxide (DMSO) and 1,2-dihaloethane (DXE, X = Cl, Br, I), and their use in the halogenation reactions. Furthermore, condition-dependent Pummerer-type fragmentations of DMSO-stabilized halogen cations to methyl(methylene)sulfonium ions and chlorodimethylsulfonium ions for synthetic applications are described.
Collapse
Affiliation(s)
- Niranjan Panda
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| | - Kuntal Palit
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| | - Soumya Mohapatra
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha-769008, India.
| |
Collapse
|
5
|
Zhang BS, Deng BJ, Zhi YX, Guo TJ, Wang YM, Gou XY, Quan ZJ, Wang XC, Liang YM. A switch strategy for the synthesis of C4-ethylamine indole and C7-aminoindoline via controllable carbon elimination. Chem Sci 2024:d4sc05111d. [PMID: 39290589 PMCID: PMC11403580 DOI: 10.1039/d4sc05111d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Controllable β-carbon elimination to extrude norbornene remains a long-standing challenge in palladium and norbornene chemistry. Herein, this manuscript describes a switchable synthesis of biologically active C4-ethylaminoindole and C7-aminoindoline scaffolds by controlling β-carbon elimination, utilizing aziridine as a C-H ethylamination reagent through a C-N bond cleavage reaction. Furthermore, the protecting groups of the product can be easily removed, offering an unusual method for the synthesis of dopamine receptor agonists.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Bao-Jie Deng
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yuan-Xin Zhi
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Tian-Jiao Guo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yi-Ming Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xue-Ya Gou
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou 730070 China
| | - Yong-Min Liang
- State Key Laboratory of Applied OrganicChemistry, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
6
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
7
|
Arteaga Giraldo JJ, Lindsay AC, Seo RCY, Kilmartin PA, Sperry J. Electrochemical oxidation of 3-substituted indoles. Org Biomol Chem 2023. [PMID: 37366580 DOI: 10.1039/d3ob00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
2-Oxindoles are an abundant heteroaromatic motif in natural products and pharmaceuticals. An appealing method for accessing 2-oxindoles is by oxidation of the corresponding indole, a transformation currently executed using stoichiometric quantities of unsafe chemical oxidants that can also form unwanted side-products. Herein, we report that 3-substituted indoles undergo a logistically straightforward, electrochemical oxidation to the corresponding 2-oxindole in the presence of potassium bromide (>20 examples), with only traces of the oxidative dimer detected. Cyclic voltammetry and control studies infer that the reaction proceeds by electrochemical generation of elemental bromine (Br2) that upon reaction with indole, followed by hydrolysis, delivers the 2-oxindole. This procedure is an appealing alternative to existing methods used to access 2-oxindoles by oxidation of the parent indole.
Collapse
Affiliation(s)
- Juan J Arteaga Giraldo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Ashley C Lindsay
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Rachel Chae-Young Seo
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Paul A Kilmartin
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Jonathan Sperry
- Centre for Green Chemical Science, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| |
Collapse
|
8
|
Trouvé J, Youssef K, Kasemthaveechok S, Gramage-Doria R. Catalyst Complexity in a Highly Active and Selective Wacker-Type Markovnikov Oxidation of Olefins with a Bioinspired Iron Complex. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
| | - Khalil Youssef
- Univ Rennes, CNRS, ISCR-UMR6226, FR-35000 Rennes, France
| | | | | |
Collapse
|
9
|
Jiang SY, Shi J, Wang W, Sun YZ, Wu W, Song JR, Yang X, Hao GF, Pan WD, Ren H. Copper-Catalyzed Selective Electron Transfer Enables Switchable Divergent Synthesis of 3-Functionalized Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Shu-Yun Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wang
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Yan-Zheng Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Xiaoyan Yang
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Wei-Dong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P. R. China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, Guizhou 550014, P. R. China
| |
Collapse
|
10
|
3-Arylidene-2-oxindoles as Potent NRH:Quinone Oxidoreductase 2 Inhibitors. Molecules 2023; 28:molecules28031174. [PMID: 36770840 PMCID: PMC9920986 DOI: 10.3390/molecules28031174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
The enzyme NRH:quinone oxidoreductase 2 (NQO2) plays an important role in the pathogenesis of various diseases such as neurodegenerative disorders, malaria, glaucoma, COVID-19 and cancer. NQO2 expression is known to be increased in some cancer cell lines. Since 3-arylidene-2-oxindoles are widely used in the design of new anticancer drugs, such as kinase inhibitors, it was interesting to study whether such structures have additional activity towards NQO2. Herein, we report the synthesis and study of 3-arylidene-2-oxindoles as novel NRH:quinone oxidoreductase inhibitors. It was demonstrated that oxindoles with 6-membered aryls in the arylidene moiety were obtained predominantly as E-isomers while for some 5-membered aryls, the Z-isomers prevailed. The most active compounds inhibited NQO2 with an IC50 of 0.368 µM. The presence of a double bond in the oxindoles was crucial for NQO2 inhibition activity. There was no correlation between NQO2 inhibition activity of the synthesized compounds and their cytotoxic effect on the A549 cell line.
Collapse
|
11
|
Wang J, Chen Y, Du W, Chen N, Fu K, He Q, Shao L. Green oxidative rearrangement of indoles using halide catalyst and hydrogen peroxide. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment III. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
13
|
Golla S, Jalagam S, Poshala S, Kokatla HP. Transition metal-free functionalization of 2-oxindoles via sequential aldol and reductive aldol reactions using rongalite as a C1 reagent. Org Biomol Chem 2022; 20:4926-4932. [PMID: 35506377 DOI: 10.1039/d2ob00665k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A sequential one-pot classical aldol, transition-metal and hydride-free reductive aldol reaction is reported here for C(sp3)- H functionalization of 2-oxindoles using the multifaceted reagent rongalite. Here, rongalite functions as a hydride-free reducing agent and double C1 unit donor. This protocol enables the synthesis of a wide range of 3-methylindoline-2-ones and 3-(hydroxymethyl)-3-methylindolin-2-ones from 2-oxindoles (65-95% yields), which are the synthetic precursors for many natural products. Some of the important aspects of this synthetic approach include one-pot methylation and hydroxymethylation, low-cost rongalite (ca. $0.03 per 1 g), mild reaction conditions and applicability to gram-scale synthesis.
Collapse
Affiliation(s)
- Sivaparwathi Golla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Swathi Jalagam
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Soumya Poshala
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Hari Prasad Kokatla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| |
Collapse
|
14
|
Shen H, Du Y, Kan J, Su W. Synthesis of 3-substituted 2-oxindoles from secondary α-bromo-propionanilides via palladium-catalyzed intramolecular cyclization. Org Biomol Chem 2022; 20:3589-3597. [PMID: 35420109 DOI: 10.1039/d2ob00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In contrast to aromatic halides, coupling reactions involving oxidative addition of alkyl halides, especially secondary or tertiary halides, to transition metals tend to be more challenging. Herein a palladium-catalyzed intramolecular cyclization of α-bromo-propionanilides has been developed, delivering a series of 3-substituted 2-oxindoles in high yields. The method features easy to prepare starting materials, broad substrate scope and excellent functional group tolerance. A detailed mechanistic investigation has been performed.
Collapse
Affiliation(s)
- Hui Shen
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Yu Du
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Jian Kan
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
| | - Weiping Su
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
15
|
Ahmad A, Dutta HS, Kumar M, Raziullah, Gangwar MK, Koley D. Directing Group Guided Site-Selective Diversification of Indoles by Aziridine: Synthesis of β-Indolylethylamines. Org Lett 2022; 24:2783-2787. [PMID: 35394290 DOI: 10.1021/acs.orglett.2c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A palladium catalyzed directing group assisted cross-coupling of aliphatic aziridines with indole, indoline, tetrahydroquinoline, and aniline has been developed to furnish the corresponding β-arylethylamine derivatives. The substrate scope was very general, and the protocol was also tolerated in the presence of various external additives. Control experiments suggested that the C-H cleavage step is the rate-determining step.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Himangsu Sekhar Dutta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Mohit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kumar Gangwar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
16
|
Mondal P, Rajapakse S, Wijeratne GB. Following Nature's Footprint: Mimicking the High-Valent Heme-Oxo Mediated Indole Monooxygenation Reaction Landscape of Heme Enzymes. J Am Chem Soc 2022; 144:3843-3854. [PMID: 35112858 DOI: 10.1021/jacs.1c11068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathways for direct conversion of indoles to oxindoles have accumulated considerable interest in recent years due to their significance in the clear comprehension of various pathogenic processes in humans and the multipotent therapeutic value of oxindole pharmacophores. Heme enzymes are predominantly responsible for this conversion in biology and are thought to proceed with a compound-I active oxidant. These heme-enzyme-mediated indole monooxygenation pathways are rapidly emerging therapeutic targets; however, a clear mechanistic understanding is still lacking. Additionally, such knowledge holds promise in the rational design of highly specific indole monooxygenation synthetic protocols that are also cost-effective and environmentally benign. We herein report the first examples of synthetic compound-I and activated compound-II species that can effectively monooxygenate a diverse array of indoles with varied electronic and steric properties to exclusively produce the corresponding 2-oxindole products in good to excellent yields. Rigorous kinetic, thermodynamic, and mechanistic interrogations clearly illustrate an initial rate-limiting epoxidation step that takes place between the heme oxidant and indole substrate, and the resulting indole epoxide intermediate undergoes rearrangement driven by a 2,3-hydride shift on indole ring to ultimately produce 2-oxindole. The complete elucidation of the indole monooxygenation mechanism of these synthetic heme models will help reveal crucial insights into analogous biological systems, directly reinforcing drug design attempts targeting those heme enzymes. Moreover, these bioinspired model compounds are promising candidates for the future development of better synthetic protocols for the selective, efficient, and sustainable generation of 2-oxindole motifs, which are already known for a plethora of pharmacological benefits.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Shanuk Rajapakse
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| |
Collapse
|
17
|
Bayat M, Saeni V, Masoumi M, Hosseini FS. One-Pot Synthesis of Dihydroxyindeno[1,2-d]Imidazoles and Naphthoquinone Substituted Indandione and Oxindole Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2033801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vosough Saeni
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Milad Masoumi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
18
|
Robidas R, Legault CY. Cyclic Haloiodanes: Syntheses, Applications and Fundamental Studies. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Raphaël Robidas
- Department of Chemistry Université de Sherbrooke Sherbrooke Québec J1K 2R1 Canada
| | - Claude Y. Legault
- Department of Chemistry Université de Sherbrooke Sherbrooke Québec J1K 2R1 Canada
| |
Collapse
|
19
|
Liang P, Zhao H, Zhou T, Zeng K, Jiao W, Pan Y, Liu Y, Fang D, Ma X, Shao H. Rapid Oxidation Indoles into 2‐Oxindoles Mediated by PIFA in Combination with
n
‐Bu
4
NCl ⋅ H
2
O. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peng Liang
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
- School of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education Sichuan University of Science & Engineering Xueyuan Street 180, Huixing Road Zigong Sichuan 643000 People's Republic of China
| | - Hang Zhao
- School of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education Sichuan University of Science & Engineering Xueyuan Street 180, Huixing Road Zigong Sichuan 643000 People's Republic of China
| | - Tingting Zhou
- School of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education Sichuan University of Science & Engineering Xueyuan Street 180, Huixing Road Zigong Sichuan 643000 People's Republic of China
| | - Kaiyun Zeng
- School of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education Sichuan University of Science & Engineering Xueyuan Street 180, Huixing Road Zigong Sichuan 643000 People's Republic of China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Yang Pan
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Yazhou Liu
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Dongmei Fang
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology Chinese Academy of Sciences 610041 Chengdu People's Republic of China
| |
Collapse
|
20
|
China H, Kageyama N, Yatabe H, Takenaga N, Dohi T. Practical Synthesis of 2-Iodosobenzoic Acid (IBA) without Contamination by Hazardous 2-Iodoxybenzoic Acid (IBX) under Mild Conditions. Molecules 2021; 26:1897. [PMID: 33801611 PMCID: PMC8036297 DOI: 10.3390/molecules26071897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
We report a convenient and practical method for the preparation of nonexplosive cyclic hypervalent iodine(III) oxidants as efficient organocatalysts and reagents for various reactions using Oxone® in aqueous solution under mild conditions at room temperature. The thus obtained 2-iodosobenzoic acids (IBAs) could be used as precursors of other cyclic organoiodine(III) derivatives by the solvolytic derivatization of the hydroxy group under mild conditions of 80 °C or lower temperature. These sequential procedures are highly reliable to selectively afford cyclic hypervalent iodine compounds in excellent yields without contamination by hazardous pentavalent iodine(III) compound.
Collapse
Affiliation(s)
- Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, 1266, Tamuracho Nagahama-shi, Shiga 526-0829, Japan
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| | - Nami Kageyama
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| | - Hotaka Yatabe
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan;
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| |
Collapse
|
21
|
NH4I-catalyzed C–S bond formation via an oxidation relay strategy: Efficient access to dithioether decorated indolizines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Zhou J, Zhang L, Chen J, Chen J, Yin C, Yu C. Rh(III)-catalyzed [4+1] annulation and ring opening for the synthesis of pyrazolo[1,2-a] indazole bearing a quaternary carbon. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Zhang L, Chen J, Zhong T, Zheng X, Zhou J, Jiang X, Yu C. Palladium-Catalyzed [2 + 2 + 1] Annulation of Alkyne-Tethered Aryl Iodides with Diaziridinone: Synthesis of 3,4-Fused Tricyclic Indoles. J Org Chem 2020; 85:10823-10834. [PMID: 32786647 DOI: 10.1021/acs.joc.0c01365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel palladium-catalyzed [2 + 2 + 1] annulation of alkyne-tethered aryl iodides with diaziridinone was developed, leading to the formation of 3,4-fused tricyclic indoles. From a mechanistic standpoint, the formation of fused tricyclic indole scaffolds involved C,C-palladacycles, which were synthesized through the intramolecular reaction of aryl halides and alkynes. The cascade reaction described herein could be carried out with a broad range of substrates and provided various 3,4-fused tricyclic indoles with yields up to 98%.
Collapse
Affiliation(s)
- Lei Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Junyu Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jian Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
24
|
Zheng X, Zhong T, Zhang L, Chen J, Chen Z, Jiang X, Yu C. Radical-Triggered Cyclization of Methylthio-Substituted Alkynones: Synthesis of Diverse 3-Alkylthiochromones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Lei Zhang
- University of Technology; Hangzhou P.R.China
| | - Junyu Chen
- University of Technology; Hangzhou P.R.China
| | - Zhiwei Chen
- University of Technology; Hangzhou P.R.China
| | | | | |
Collapse
|
25
|
Chen J, Zhang L, Zheng X, Zhou J, Zhong T, Yu C. Synthesis of isoquinolinone derivatives by Rh (III)-catalyzed C–H functionalization of N-ethoxybenzamides. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1755984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Junyu Chen
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Lei Zhang
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Xiangyun Zheng
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Jian Zhou
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Tianshuo Zhong
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| | - Chuanming Yu
- College of pharmaceutical sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. of China
| |
Collapse
|
26
|
Jiang X, Zhao Z, Shen Z, Chen K, Fang L, Yu C. Flavin/I2
-Catalyzed Aerobic Oxidative C-H Sulfenylation of Aryl-Fused Cyclic Amines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zongchen Zhao
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zhifeng Shen
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Keda Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P.R. China
| | - Liyun Fang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| |
Collapse
|
27
|
Jiang X, Yang L, Ye Z, Du X, Fang L, Zhu Y, Chen K, Li J, Yu C. Electrosynthesis of C3 Alkoxylated Quinoxalin-2(1H
)-ones through Dehydrogenative C-H/O-H Cross-Coupling. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901928] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Liechao Yang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Zenghui Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P.R. China
| | - Xiaofan Du
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Liyun Fang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Yu Zhu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Keda Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P.R. China
| | - Jianjun Li
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P.R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P.R. China
| |
Collapse
|
28
|
Zhang L, Chen J, Chen X, Zheng X, Zhou J, Zhong T, Chen Z, Yang YF, Jiang X, She YB, Yu C. Rh(iii)-catalyzed, hydrazine-directed C–H functionalization with 1-alkynylcyclobutanols: a new strategy for 1H-indazoles. Chem Commun (Camb) 2020; 56:7415-7418. [PMID: 32484463 DOI: 10.1039/c9cc08884a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh(iii)-catalyzed coupling of phenylhydrazines with 1-alkynylcyclobutanols was realized through a hydrazine-directed C–H functionalization and [4+1] annulation pathway.
Collapse
Affiliation(s)
- Lei Zhang
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Junyu Chen
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xiahe Chen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Xiangyun Zheng
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jian Zhou
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Tianshuo Zhong
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Zhiwei Chen
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Xinpeng Jiang
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yuan-Bin She
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Chuanming Yu
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
29
|
Abstract
Oxidation of indoles is a fundamental organic transformation to deliver a variety of synthetically and pharmaceutically valuable nitrogen-containing compounds. Prior methods require the use of either organic oxidants (meta-chloroperoxybenzoic acid, N-bromosuccinimide, t-BuOCl) or stoichiometric toxic transition metals [Pb(OAc)4, OsO4, CrO3], which produced oxidant-derived by-products that are harmful to human health, pollute the environment and entail immediate purification. A general catalysis protocol using safer oxidants (H2O2, oxone, O2) is highly desirable. Herein, we report a unified, efficient halide catalysis for three oxidation reactions of indoles using oxone as the terminal oxidant, namely oxidative rearrangement of tetrahydro-β-carbolines, indole oxidation to 2-oxindoles, and Witkop oxidation. This halide catalysis protocol represents a general, green oxidation method and is expected to be used widely due to several advantageous aspects including waste prevention, less hazardous chemical synthesis, and sustainable halide catalysis. Indole oxidation represents a fundamental organic transformation delivering valuable nitrogen compounds. Here, the authors report a general halide catalysis protocol applied to three classes of oxidation reactions of indoles with oxone as a sustainable terminal oxidant.
Collapse
|
30
|
Golec B, Nawara K, Thummel RP, Waluk J. Photoinduced oxidation of an indole derivative: 2-(1'H-indol-2'-yl)-[1,5]naphthyridine. Photochem Photobiol Sci 2019; 18:2225-2231. [PMID: 30896718 DOI: 10.1039/c8pp00587g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The UV-induced oxidation of 2-(1'H-indol-2'-yl)-[1,5]naphthyridine acetonitrile solution in the presence of air leads to the formation of 2-(1,5-naphthyridin-2-yl)-4H-3,1-benzoxazin-4-one as a major product and N-(2-formylphenyl)-1,5-naphthyridine-2-carboxamide as a minor one. The probable reaction mechanisms are different for the two photoproducts and may involve both the reaction with singlet oxygen generated by the excited substrate or the reaction of the excited substrate with the ground state oxygen molecule. Electronic absorption and IR spectra indicate that both photoproducts are formed as mixtures of syn and anti-rotameric forms. The obtained results indicate an efficient and easy method for the synthesis of molecules with a benzoxazinone structure.
Collapse
Affiliation(s)
- Barbara Golec
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Krzysztof Nawara
- Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Randolph P Thummel
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. and Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
31
|
Jiang X, Yang L, Yang W, Zhu Y, Fang L, Yu C. Controllable synthesis of 3-chloro- and 3,3-dichloro-2-oxindoles via hypervalent iodine-mediated chlorooxidation. Org Biomol Chem 2019; 17:6920-6924. [PMID: 31282524 DOI: 10.1039/c9ob01173k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient and controllable protocol for the synthesis of 3-chloro- and 3,3-dichloro-2-oxindoles has been developed via hypervalent iodine-promoted chlorooxidation. By using two equivalents of 1-chloro-1,2-benziodoxol-3-(1H)-one, a wide range of indoles were transformed into 3-chloro-2-oxindoles in DMF/CF3CO2H/H2O at room temperature with good yields. As far as we know, this is the first report on the selective C-2 oxidation and C-3 monochlorination of simple indoles. In addition, three equivalents of the same hypervalent iodine afforded 3,3-dichloro-2-oxindoles in up to 99% yields under optimized conditions (dioxane/H2O, 80 °C). The method features mild reaction conditions, the widespread availability of the substrates, and good functional group tolerance.
Collapse
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Liechao Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Wenlong Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Yu Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Liyun Fang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China.
| |
Collapse
|
32
|
Abstract
Facile regioselective oxidation of indoles to 2-oxindoles promoted by sulfuric acid adsorbed on silica gel is reported. The demonstrated practical site-selective heterogeneous oxidation reactions conveniently take place with a broad substrate scope and functional group tolerances. The present oxidation strategy is also employed to accomplish the total synthesis of natural products donaxaridine and donaxarine. On the basis of analytical and spectral data it is evidenced that donaxarine stays in equilibrium with its hydrated ring opened form. The structural features essential for this type of oxidation and plausible mechanism are discussed in brief.
Collapse
Affiliation(s)
- Santosh V Shelar
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India. and Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| | - Narshinha P Argade
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune 411 008, India. and Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| |
Collapse
|
33
|
Zhang L, Chen J, Chen J, Jin L, Zheng X, Jiang X, Yu C. Synthesis of 2-substituted indoles by iridium (III)-catalyzed C H functionalization of N-phenylpyridin-2-amines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Jiang X, Zhu W, Yang L, Zheng Z, Yu C. Hypervalent Iodine-Mediated Cyclization of Homotryptamine Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801842] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Weijie Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| | - Liechao Yang
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Zicong Zheng
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences; Zhejiang University of Technology; Hangzhou P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
35
|
Jiang X, Zhu B, Lin K, Wang G, Su WK, Yu C. Metal-free synthesis of 2,2-disubstituted indolin-3-ones. Org Biomol Chem 2019; 17:2199-2203. [DOI: 10.1039/c8ob03057j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A straightforward method for the synthesis of indolin-3-ones bearing a C2-quaternary functionality is reported. This cross-coupling reaction allows the facile synthesis of a series of 2,2-disubstituted indolin-3-ones in the absence of a metal catalyst in up to 94% yields.
Collapse
Affiliation(s)
- Xinpeng Jiang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Bingbin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Kai Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Guan Wang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Wei-Ke Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- P.R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- P.R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
| |
Collapse
|
36
|
Zhang L, Zheng X, Chen J, Cheng K, Jin L, Jiang X, Yu C. Ru(ii)-Catalyzed C6-selective C–H amidation of 2-pyridones. Org Chem Front 2018. [DOI: 10.1039/c8qo00795k] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient Ru-catalyzed C6 site-selective amidation of 2-pyridones has been accomplished with dioxazolone under mild conditions.
Collapse
Affiliation(s)
- Lei Zhang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jinkang Chen
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Kang Cheng
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Licheng Jin
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Chuanming Yu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
| |
Collapse
|