1
|
Chen L, Tang ML, He YJ, Huang W, Peng T, Xie J, Li JH, Zhang ZZ, Li JL. DBU-Mediated [3+3] Annulation of Indolin-3/2-ones and Ethenesulfonyl Fluorides: An Approach to Indole-Fused δ-Sultones. J Org Chem 2025; 90:5180-5194. [PMID: 40203132 DOI: 10.1021/acs.joc.5c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A general and efficient approach to the synthesis of various indole-fused δ-sultones has been developed via DBU-mediated [3+3] cyclizations of indolin-3/2-ones and β-(hetero)arylethenesulfonyl fluorides. Notably, the reaction shows a broad substrate scope, and over 70 examples were exhibited in up to 99% isolated yield. In addition, some of the synthesized compounds showed significant antitumor activity against HepG2 and Caco-2 cells in vitro, which might provide promising insights for the future discovery and rational design of novel antitumor agents.
Collapse
Affiliation(s)
- Lin Chen
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Mei-Ling Tang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Yu-Jiao He
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Ting Peng
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Jun Xie
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Jiang-Hong Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Zhuo-Zhuo Zhang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Jun-Long Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, Sichuan 610106, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
2
|
Liashuk OS, Ryzhov IA, Hryshchuk OV, Volovenko YM, Grygorenko OO. [3+2] Cycloaddition of Alkynyl Boronates and in situ Generated Azomethine Ylide. Chemistry 2024; 30:e202303504. [PMID: 38059680 DOI: 10.1002/chem.202303504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Scalable [3+2] cycloaddition of alkynyl boronates and in situ generated unstabilized azomethine ylide is reported for the first time. The selective formation of either 1 : 1 or 1 : 2 cycloaddition products was achieved by carefully optimizing the reaction conditions, mainly by controlling the reactant stoichiometry, catalyst loading, and internal temperature. The developed protocol tolerated many valuable functional groups, including TMS, protected alcohol (as ether or THP derivatives), or aldehyde (as acetal). Further common C-C and C-heteroatom bond-forming reactions, as well as scaled-up procedures demonstrate the utility of the prepared compounds as building blocks for organic synthesis and drug discovery.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Ihor A Ryzhov
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr V Hryshchuk
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Yulian M Volovenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
3
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
4
|
Sandeep K, Kumar AS, Kumara Swamy KC. Rhodium‐Catalyzed Vinyl Sulfonylation of 3‐Carbonyl‐Substituted Indoles with Ethenesulfonyl Fluoride by Cross‐Dehydrogenative Coupling: An Application in (3+2) Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- K. Sandeep
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| | - A. Sanjeeva Kumar
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| | - K. C. Kumara Swamy
- School of Chemistry University of Hyderabad Gachibowli Hyderabad 5000046 Telangana State India
| |
Collapse
|
5
|
Liashuk OS, Ryzhov IA, Hryshchuk OV, Vashchenko BV, Melnychuk PV, Volovenko YM, Grygorenko OO. Synthesis of 3‐Borylated Pyrrolidines by 1,3‐Dipolar Cycloaddition of Alkenyl Boronates and Azomethine Ylide. Chemistry 2022; 28:e202202117. [DOI: 10.1002/chem.202202117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr S. Liashuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Ihor A. Ryzhov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr V. Hryshchuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Yulian M. Volovenko
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
6
|
Wang K, Li Y, Shuai X, Chen R, Sun A, Wang Z. Highly efficient and diastereoselective construction of substituted pyrrolidines bearing a quaternary carbon center via 1,3‐dipolar cycloaddition. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai‐Kai Wang
- School of Pharmacy, Key Laboratory of Nano‐carbon Modified Film Technology Engineering of Henan Province Xinxiang University Xinxiang China
| | - Yan‐Li Li
- Medical College Xinxiang University Xinxiang China
| | | | - Rongxiang Chen
- School of Pharmacy, Key Laboratory of Nano‐carbon Modified Film Technology Engineering of Henan Province Xinxiang University Xinxiang China
| | - Aili Sun
- School of Pharmacy, Key Laboratory of Nano‐carbon Modified Film Technology Engineering of Henan Province Xinxiang University Xinxiang China
| | - Zhan‐Yong Wang
- School of Pharmacy, Key Laboratory of Nano‐carbon Modified Film Technology Engineering of Henan Province Xinxiang University Xinxiang China
| |
Collapse
|
7
|
Frye NL, Daniliuc CG, Studer A. Radical 1-Fluorosulfonyl-2-alkynylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202115593. [PMID: 34958162 PMCID: PMC9305502 DOI: 10.1002/anie.202115593] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/12/2022]
Abstract
Sulfonyl fluorides have found widespread use in chemical biology and drug discovery. The development of synthetic methods for the introduction of the sulfonyl fluoride moiety is therefore of importance. Herein, a transition-metal-free radical 1,2-difunctionalization of unactivated alkenes via FSO2 -radical addition with subsequent vicinal alkynylation to access β-alkynyl-fluorosulfonylalkanes is presented. Alkynyl sulfonyl fluorides are introduced as highly valuable bifunctional radical trapping reagents that also serve as FSO2 -radical precursors. The β-alkynyl-fluorosulfonylalkanes obtained in these transformations can be readily diversified by using SuFEx click chemistry to obtain sulfonates and sulfonamides.
Collapse
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
8
|
Frye NL, Daniliuc CG, Studer A. Radikalische 1‐Fluorsulfonyl‐2‐alkinylierung von nicht aktivierten Alkenen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| |
Collapse
|
9
|
Fedyk A, Slobodyanyuk EY, Stotska O, Vashchenko BV, Volochnyuk DM, Sibgatulin DA, Tolmachev AA, Grygorenko OO. Heteroaliphatic Dimethylphosphine Oxide Building Blocks: Synthesis and Physico‐Chemical Properties. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andrii Fedyk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
| | - Evgeniy Y. Slobodyanyuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
| | - Olha Stotska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Andrey A. Tolmachev
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
10
|
Zabolotna Y, Volochnyuk DM, Ryabukhin SV, Horvath D, Gavrilenko KS, Marcou G, Moroz YS, Oksiuta O, Varnek A. A Close-up Look at the Chemical Space of Commercially Available Building Blocks for Medicinal Chemistry. J Chem Inf Model 2021; 62:2171-2185. [PMID: 34928600 DOI: 10.1021/acs.jcim.1c00811] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to efficiently synthesize desired compounds can be a limiting factor for chemical space exploration in drug discovery. This ability is conditioned not only by the existence of well-studied synthetic protocols but also by the availability of corresponding reagents, so-called building blocks (BBs). In this work, we present a detailed analysis of the chemical space of 400 000 purchasable BBs. The chemical space was defined by corresponding synthons─fragments contributed to the final molecules upon reaction. They allow an analysis of BB physicochemical properties and diversity, unbiased by the leaving and protective groups in actual reagents. The main classes of BBs were analyzed in terms of their availability, rule-of-two-defined quality, and diversity. Available BBs were eventually compared to a reference set of biologically relevant synthons derived from ChEMBL fragmentation, in order to illustrate how well they cover the actual medicinal chemistry needs. This was performed on a newly constructed universal generative topographic map of synthon chemical space that enables visualization of both libraries and analysis of their overlapped and library-specific regions.
Collapse
Affiliation(s)
- Yuliana Zabolotna
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Dmitriy M Volochnyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Sergey V Ryabukhin
- The Institute of High Technologies, Kyiv National Taras Shevchenko University, 64 Volodymyrska Street, Kyiv 01601, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Dragos Horvath
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Konstantin S Gavrilenko
- Research-And-Education ChemBioCenter, National Taras Shevchenko University of Kyiv, Chervonotkatska str., 61, 03022 Kiev, Ukraine.,Enamine Ltd., 78 Chervonotkatska str., 02660 Kiev, Ukraine
| | - Gilles Marcou
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France
| | - Yurii S Moroz
- Research-And-Education ChemBioCenter, National Taras Shevchenko University of Kyiv, Chervonotkatska str., 61, 03022 Kiev, Ukraine.,Chemspace, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Oleksandr Oksiuta
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine.,Chemspace, Chervonotkatska Street 78, 02094 Kyiv, Ukraine
| | - Alexandre Varnek
- University of Strasbourg, Laboratoire de Chemoinformatique, 4, rue B. Pascal, Strasbourg 67081, France.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, 001-0021 Sapporo, Japan
| |
Collapse
|
11
|
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
13
|
Zhong T, Chen Z, Yi J, Lu G, Weng J. Recent progress in the synthesis of sulfonyl fluorides for SuFEx click chemistry. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Logvinenko IG, Kondratov IS, Dobrydnev AV, Kozytskiy AV, Grygorenko OO. Synthesis and reactions of ω-CF3O-substituted aliphatic sulfonyl chlorides. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Smedley CJ, Li G, Barrow AS, Gialelis TL, Giel MC, Ottonello A, Cheng Y, Kitamura S, Wolan DW, Sharpless KB, Moses JE. Diversity Oriented Clicking (DOC): Divergent Synthesis of SuFExable Pharmacophores from 2-Substituted-Alkynyl-1-Sulfonyl Fluoride (SASF) Hubs. Angew Chem Int Ed Engl 2020; 59:12460-12469. [PMID: 32301265 PMCID: PMC7572632 DOI: 10.1002/anie.202003219] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Diversity Oriented Clicking (DOC) is a unified click-approach for the modular synthesis of lead-like structures through application of the wide family of click transformations. DOC evolved from the concept of achieving "diversity with ease", by combining classic C-C π-bond click chemistry with recent developments in connective SuFEx-technologies. We showcase 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs) as a new class of connective hub in concert with a diverse selection of click-cycloaddition processes. Through the selective DOC of SASFs with a range of dipoles and cyclic dienes, we report a diverse click-library of 173 unique functional molecules in minimal synthetic steps. The SuFExable library comprises 10 discrete heterocyclic core structures derived from 1,3- and 1,5-dipoles; while reaction with cyclic dienes yields several three-dimensional bicyclic Diels-Alder adducts. Growing the library to 278 discrete compounds through late-stage modification was made possible through SuFEx click derivatization of the pendant sulfonyl fluoride group in 96 well-plates-demonstrating the versatility of the DOC approach for the rapid synthesis of diverse functional structures. Screening for function against MRSA (USA300) revealed several lead hits with improved activity over methicillin.
Collapse
Affiliation(s)
- Christopher J Smedley
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Gencheng Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Timothy L Gialelis
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alessandra Ottonello
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Yunfei Cheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Seiya Kitamura
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dennis W Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.,Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
16
|
Diversity Oriented Clicking (DOC): Divergent Synthesis of SuFExable Pharmacophores from 2‐Substituted‐Alkynyl‐1‐Sulfonyl Fluoride (SASF) Hubs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003219] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Liu J, Wang SM, Qin HL. Light-induced [2 + 2] cycloadditions for the construction of cyclobutane-fused pyridinyl sulfonyl fluorides. Org Biomol Chem 2020; 18:4019-4023. [PMID: 32427271 DOI: 10.1039/d0ob00814a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Cyclobutanes are an important class of motifs present in a wide range of natural products and other biologically significant molecules. A photocatalytic [2 + 2] cycloaddition between pyridones or isoquinolones and ethenesulfonyl fluoride was achieved, providing a portal to a class of unique cyclobutane-fused pyridinyl sulfonyl fluorides with quaternary rigid rings (30 examples). Further applications of these novel sulfonyl fluoride molecules in SuFEx click chemistry were also accomplished, providing the corresponding sulfonates and sulphonamides with reasonable yields.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
18
|
Meyer D, El Qacemi M. Applications of 2-Chloro-3,3,3-trifluoroprop-1-ene (HCFO-1233xf): A Rapid Entry to Various β-Substituted-trifluoromethyl-ethenes. Org Lett 2020; 22:3479-3484. [PMID: 32281805 DOI: 10.1021/acs.orglett.0c00931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient base-promoted reaction of O-, N-, and S-nucleophiles with 2-chloro-3,3,3-trifluoprop-1-ene (HCFO-1233xf) is described providing access to various β-substituted-trifluoromethyl-ethenes under mild reaction conditions. Mechanistic investigations shed some light on the regio-, chemo-, and stereoselectivities observed. The olefins prepared represent attractive intermediates in chemical discovery: some applications include their conversion to pyrrolidines via a [3 + 2] dipolar cycloaddition reaction. These weakly basic amines represent novel synthons that could be readily elaborated through a range of reactions.
Collapse
Affiliation(s)
- Daniel Meyer
- Syngenta Crop Protection Research, Stein, Switzerland
| | | |
Collapse
|
19
|
Chen J, Huang BQ, Wang ZQ, Zhang XJ, Yan M. Asymmetric Conjugate Addition of Ethylene Sulfonyl Fluorides to 3-Amido-2-oxindoles: Synthesis of Chiral Spirocyclic Oxindole Sultams. Org Lett 2019; 21:9742-9746. [DOI: 10.1021/acs.orglett.9b03911] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bao-qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeng-qing Wang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. The growing applications of SuFEx click chemistry. Chem Soc Rev 2019; 48:4731-4758. [DOI: 10.1039/c8cs00960k] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SuFEx (Sulfur Fluoride Exchange) is a modular, next generation family of click reactions, geared towards the rapid and reliable assembly of functional molecules.
Collapse
Affiliation(s)
- A. S. Barrow
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - C. J. Smedley
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Q. Zheng
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - S. Li
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - J. Dong
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - J. E. Moses
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
21
|
Arupula SK, Gudimella SK, Guin S, Mobin SM, Samanta S. Chemoselective cyclization of N-sulfonyl ketimines with ethenesulfonyl fluorides: access to trans-cyclopropanes and fused-dihydropyrroles. Org Biomol Chem 2019; 17:3451-3461. [DOI: 10.1039/c9ob00433e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stereo- and chemoselective ring closing reaction of N-sulfonyl ketimines with ethene sulfonyl fluorides promoted by DBU is reported. This selective C–C vs. C–N bond cyclization process delivers to trans-cyclopropanes (dr up to ≤99 : 1) and fused-dihydropyrroles.
Collapse
Affiliation(s)
| | | | - Soumitra Guin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Sampak Samanta
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| |
Collapse
|
22
|
Affiliation(s)
- Praveen K. Chinthakindi
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University; Box 574 SE-75123 Uppsala Sweden
| | - Per I. Arvidsson
- Catalysis and Peptide Research Unit; University of KwaZulu Natal; Durban South Africa
- Science for Life Laboratory, Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|