1
|
Zhang N, Chang H, Miao R, Liu T, Ding L, Fang Y. Structure-activity relationships of aniline-based squaraines for distinguishable staining and bright two-photon fluorescence bioimaging in plant cells. J Mater Chem B 2024; 12:5350-5359. [PMID: 38738315 DOI: 10.1039/d4tb00400k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
An organelle-selective vision provides insights into the physiological response of plants and crops to environmental stresses in sustainable agriculture ecosystems. Biological applications often require two-photon excited fluorophores with low phototoxicity, high brightness, deep penetration, and tuneable cell entry. We obtained three aniline-based squaraines (SQs) tuned from hydrophobic to hydrophilic characteristics by modifying terminal pendant groups and substituents, and investigated their steady-state absorption and far-red-emitting fluorescence properties. The SQs exhibited two-photon absorption (2PA) ranging from 750 to 870 nm within the first biological spectral window; their structure-property relationships, corresponding to the 2PA cross sections (δ2PA), and structure differences were demonstrated. The maximum δ2PA value was ∼1220 GM at 800 nm for hydrophilic SQ3. Distinct biological staining efficiency and selective SQ bioimaging were evaluated utilizing the onion epidermal cell model. Contrary to the hydrophobic SQ1 results in the onion epidermal cell wall, amphiphilic SQ2 tagged the vacuole and nucleus and SQ3 tagged the vacuole. Distinguishable staining profiles in the roots and leaves were achieved. We believe that this study is the first to demonstrate distinct visualisation efficiency induced by the structure differences of two-photon excited SQs. Our results can help establish the versatile roles of novel near-infrared-emitting SQs in biological applications.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haixia Chang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
2
|
Zhang N, Liu L, Chang H, Liu K, Liu T, Ding L, Fang Y. Tunable Non-Kasha Behaviors and Excited-State Dynamics of Quadrupolar Squaraine Aggregates. J Phys Chem Lett 2023; 14:7283-7289. [PMID: 37560981 DOI: 10.1021/acs.jpclett.3c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Versatile coupling theories have been developed for rationalizing unusual aggregation phenomena of multipolar chromophores. Here, diverse excitonic couplings of a quadrupolar squaraine dye protonated by trifluoroacetic acid could be achieved and tuned unprecedentedly in different solvation media. Subtle changes of the solvent and ion pair influenced the aggregation of the donor-acceptor-donor (D-A-D)-type SQC6 and led to significant variations in optical properties. In contrast to conventional H/J aggregates, strong spectroscopic evidence of nonfluorescent and red-shifted hJ aggregation was obtained. Assumptions of the excitonic interplay with variable strength stabilized by the synergic contributions of π-π stacking and electronic interaction were addressed. Comparative excited-state dynamics in the aggregates clarified the distinctive excitonic coupling of adjacent quadrupolar molecules and the nature of the excited state beyond the dimers. Meanwhile, dominant two-photon absorption transitions could be elucidated by a resonance-enhanced mechanism. The present unusual molecular interplay provides a strategy to fine tune the optical properties of multipolar aggregates.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Lu Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Haixia Chang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| |
Collapse
|
3
|
Squaraine dyes as serum albumins probes: Synthesis, photophysical experiments and molecular docking studies. Bioorg Chem 2021; 115:105221. [PMID: 34364053 DOI: 10.1016/j.bioorg.2021.105221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 01/01/2023]
Abstract
Three barbiturate squaraine dyes derived from indolenine or benzothiazole, with different barbituric acid derivatives were prepared, characterized and photophysically evaluated by standard spectroscopic methods. As expectable for squaraines, these dyes showed narrow and intense absorption and emission bands in the Vis/NIR region. The interaction of synthesized dyes with bovine and human serum albumins (BSA and HSA) was also evaluated in phosphate buffer (PB). The results revealed that upon the addition of BSA or HSA the complex dye-protein emit more fluorescence, and the emission intensity is directly proportional to the concentration of protein used (0-3.5 µM). The titration tests allowed to calculate the binding constants, in an order of magnitude of 104-106 M, as well as the limits of detection and quantification in the nanomolar tens range. All dyes showed a good response to the interaction with both proteins, but the most pronounced envisioning their use as protein labeling was observed for the squaraine dye derived from the indolenine with a 1,3-dimethylbarbituric acid moiety. The molecular docking studies revealed the existence of a binding between the compounds and four sites on the HSA molecule, where one of these four locations is a new binding site with which this series of dye interacts.
Collapse
|
4
|
Kubota Y, Nakazawa M, Lee J, Naoi R, Tachikawa M, Inuzuka T, Funabiki K, Matsui M, Kim T. Synthesis of near-infrared absorbing and fluorescent bis(pyrrol-2-yl)squaraines and their halochromic properties. Org Chem Front 2021. [DOI: 10.1039/d1qo01169c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1,2-Squaraines (partially conjugated neutral structure) showed blue-shifted λmax compared to the corresponding 1,3-squaraines (fully conjugated zwitterionic structure) and the mono-protonated thiophene-fused 1,3-squaraine showed λmax at 1007 nm.
Collapse
Affiliation(s)
- Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masato Nakazawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Junheon Lee
- Department of Textile System Engineering, College of Engineering, Kyungpook National University, 80 Daehakro Buk-gu Daegu, 41566, Korea
| | - Ryoma Naoi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Motoki Tachikawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Toshiyasu Inuzuka
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masaki Matsui
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Taekyeong Kim
- Department of Textile System Engineering, College of Engineering, Kyungpook National University, 80 Daehakro Buk-gu Daegu, 41566, Korea
| |
Collapse
|
5
|
Abstract
The self-assembly of a newly synthesized bis(squaraine) dye was investigated revealing the formation of J-type aggregates with absorption maxima at 886 nm.
Collapse
Affiliation(s)
- Chia-An Shen
- Institut für Organische Chemie
- Universität Würzburg
- 97074 Würzburg
- Germany
| | - Frank Würthner
- Institut für Organische Chemie
- Universität Würzburg
- 97074 Würzburg
- Germany
- Center for Nanosystems Chemistry & Bavarian Polymer Institute
| |
Collapse
|
6
|
Chang HJ, Bondar MV, Liu T, Liu X, Singh S, Belfield KD, Sheely A, Masunov AE, Hagan DJ, Van Stryland EW. Electronic Nature of Neutral and Charged Two-Photon Absorbing Squaraines for Fluorescence Bioimaging Application. ACS OMEGA 2019; 4:14669-14679. [PMID: 31552306 PMCID: PMC6751543 DOI: 10.1021/acsomega.9b00718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/13/2019] [Indexed: 05/10/2023]
Abstract
The electronic properties of neutral 2,4-bis(4-bis(2-hydroxyethyl) amino-2-hydroxy-6-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)squaraine (1) and charged 2-((3-octadecylbenzothiazol-2(3H)-ylidene)methyl)-3-oxo-4-((3-(4-(pyridinium-1-yl)butyl)benzo-thiazol-3-ium-2-yl)methylene)cyclobut-1-enolate iodide (2) squaraine derivatives were analyzed based on comprehensive linear photophysical, photochemical, nonlinear optical studies (including two-photon absorption (2PA) and femtosecond transient absorption spectroscopy measurements), and quantum chemical calculations. The steady-state absorption, fluorescence, and excitation anisotropy spectra of these new squaraines revealed the values and mutual orientations of the main transition dipoles of 1 and 2 in solvents of different polarity, while their role in specific nonlinear optical properties was shown. The degenerate 2PA spectra of 1 and 2 exhibited similar shapes, with maximum cross sections of ∼300-400 GM, which were determined by the open aperture Z-scan method over a broad spectral range. The nature of the time-resolved excited-state absorption spectra of 1 and 2 was analyzed using a femtosecond transient absorption pump-probe technique and the characteristic relaxation times of 4-5 ps were revealed. Quantum chemical analyses of the electronic properties of 1 and 2 were performed using the ZINDO/S//DFT theory level, affording good agreement with experimental data. To demonstrate the potential of squaraines 1 and 2 as fluorescent probes for bioimaging, laser scanning fluorescence microscopy images of HeLa cells incubated with new squaraines were obtained.
Collapse
Affiliation(s)
- Hao-Jung Chang
- CREOL,
The College of Optics and Photonics, University
of Central Florida, P.O. Box 162366, Orlando, Florida 32816, United States
| | | | - Taihong Liu
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
- School
of Chemistry and Chemical Engineering, Shaanxi
Normal University, Xi’an 710062, P. R. China
| | - Xinglei Liu
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Sweety Singh
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Kevin D. Belfield
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
- E-mail: . Phone: 973-596-3677 (K.D.B.)
| | - Andrew Sheely
- NanoScienece
Technology Center, University of Central
Florida, 12424 Research Parkway, Ste. 400, Orlando, Florida 32826, United States
- School of
Modeling, Simulation, and Training, University
of Central Florida, 3100 Technology Parkway, Orlando, Florida 32826, United
States
| | - Artëm E. Masunov
- NanoScienece
Technology Center, University of Central
Florida, 12424 Research Parkway, Ste. 400, Orlando, Florida 32826, United States
- School of
Modeling, Simulation, and Training, University
of Central Florida, 3100 Technology Parkway, Orlando, Florida 32826, United
States
- South
Ural State University, Lenin pr. 76, Chelyabinsk 454080, Russia
- Photochemistry
Center RAS, Federal Research Center Crystallography
and Photonics Russian Academy of Science, Ul. Novatorov 7a, Moscow 119421, Russia
- National
Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, Moscow 115409, Russia
| | - David J. Hagan
- CREOL,
The College of Optics and Photonics, University
of Central Florida, P.O. Box 162366, Orlando, Florida 32816, United States
- E-mail: . Phone: 407-823-6817 (D.J.H.)
| | - Eric W. Van Stryland
- CREOL,
The College of Optics and Photonics, University
of Central Florida, P.O. Box 162366, Orlando, Florida 32816, United States
| |
Collapse
|
7
|
Extended conjugation in stilbenoid squaraines. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2019. [DOI: 10.1515/znb-2018-0260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
Squaraines, two-fold condensation products in 1,3-position of squaric acid, represent dyes or pigments of high actuality. After their first boom in electrophotography diverse applications are presently studied in a wide area of research, which reaches from electrooptical materials to biosensors and compounds used in photodynamic therapy. Absorption and/or emission ranges in the NIR are mandatory for many of these techniques. The present article deals with stilbenoid squaraines, which feature an extended conjugation in their biradicaloid D-π-A-π-D structure. Due to the charge-transfer character of the excitation, boundaries are set for the optimal length of the conjugation. The absorption maxima of the stilbenoid squaraines and their aggregates are lying in chloroform as a solvent between 600 and 1000 nm. In the solid state panchromatic absorptions can be observed, which reach far into the NIR region. The facile preparation of squaraines bearing stilbene building blocks in one or two of their arms and moreover the easy access to dyes with multiple squaraine units fixed to stilbenoid scaffolds promise a wide palette of further applications in materials science.
Collapse
|
8
|
Zheng Z, Li H, Sun S, Xu Y. Media Dependent Switching of Selectivity and Continuous near Infrared Turn-on Fluorescence Response through Cascade Interactions from Noncovalent to Covalent Binding for Detection of Serum Albumin in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44336-44343. [PMID: 30514088 DOI: 10.1021/acsami.8b19768] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Abnormal level of proteins is proved to be associated with diseases. Thus, protein sensing is helpful for clinical diagnosis and therapy. However, there is a great variety of protein species and relatively low concentration of each protein in complicated biological systems including other nonprotein biomolecules. Therefore, it remains challenging to develop an effective method for detecting protein with high selectivity and sensitivity. Herein, a new self-assembly method based on a robust dye SQSS of which two squaraine molecules were conjugated through disulfide bond was developed for highly selective and sensitive detection of serum albumin (SA) in aqueous solution and live cells. SQSS can self-assemble into "compact" aggregates, offering "inert" disulfide group and very low background fluorescence through the combination of aggregation quenching and homogeneous fluorescence resonance energy transfer (homoFRET) quenching. The response of SQSS to SA undergoes two cascade stages. At the first stage, SA drives the compact assemblies of SQSS to form loose ones with fast speed (30 s) through noncovalent interaction, resulting in the enhancement of fluorescence to some extent. In this loose assembly state, the disulfide bond in SQSS is reactive. At the second stage, the Cys34 in SA slowly induced further disassembly through covalent binding with reactive disulfide bond, resulting in fluorescence further increasing and SQSS labeling to SA that cannot be displaced by site binding ligands of SA. The self-assemblies of SQSS can selectively detect SA with continuous near-infrared (NIR) turn-on fluorescence response in 100% aqueous buffer solution. In addition, SQSS showed the potential application of imaging SA in living cells. On the other hand, the loose assembly state of SQSS was also achieved in aqueous solution with 20% CH3CN. In this media, thiol-containing glutathione (GSH) caused the disassembly of SQSS with turn-on fluorescence response through interaction with disulfide bond. SQSS can selectively recognize GSH over other amino acids even in the presence of other sulfhydryl amino acids. As a proof-of-concept method, the molecular self-assembly through multisteps interactions would provide an ideal strategy for detection and live-cell imaging of biorelated molecules with high selectivity and signal-to-noise ratio.
Collapse
Affiliation(s)
- Ziming Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| |
Collapse
|