1
|
Fu D, Xu J. Tf 2O/2-Chloropyridine-Triggered Synthesis of Benzo[ b]thiophene 1,1-Dioxides from Sulfonium α-Acyl Sulfonylmethylides. J Org Chem 2024; 89:3072-3083. [PMID: 38357895 DOI: 10.1021/acs.joc.3c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Triflic anhydride and 2-chloropyridine-comediated tandem activation, intramolecular aromatic electrophilic addition, and 1,2-sulfonyl shift via spirocyclic intermediates of sulfonium α-acyl sulfonylmethylides realize the efficient synthesis of 2-alkyl/arylthiobenzo[b]thiophene 1,1-dioxides. The deactivated sulfonyl group determines the site-selectivity of the electrophilic addition via the ipso-attack, while the following S-migration controls the regioselectivity. Some of 2-methylthiobenzo[b]thiophene 1,1-dioxides show fluorescence properties in the solid state and in their solutions.
Collapse
Affiliation(s)
- Duo Fu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
2
|
Petit GA, Mohanty B, McMahon RM, Nebl S, Hilko DH, Wilde KL, Scanlon MJ, Martin JL, Halili MA. Identification and characterization of two drug-like fragments that bind to the same cryptic binding pocket of Burkholderia pseudomallei DsbA. Acta Crystallogr D Struct Biol 2022; 78:75-90. [PMID: 34981764 PMCID: PMC8725163 DOI: 10.1107/s2059798321011475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023] Open
Abstract
Disulfide-bond-forming proteins (Dsbs) play a crucial role in the pathogenicity of many Gram-negative bacteria. Disulfide-bond-forming protein A (DsbA) catalyzes the formation of the disulfide bonds necessary for the activity and stability of multiple substrate proteins, including many virulence factors. Hence, DsbA is an attractive target for the development of new drugs to combat bacterial infections. Here, two fragments, bromophenoxy propanamide (1) and 4-methoxy-N-phenylbenzenesulfonamide (2), were identified that bind to DsbA from the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis. The crystal structures of oxidized B. pseudomallei DsbA (termed BpsDsbA) co-crystallized with 1 or 2 show that both fragments bind to a hydrophobic pocket that is formed by a change in the side-chain orientation of Tyr110. This conformational change opens a `cryptic' pocket that is not evident in the apoprotein structure. This binding location was supported by 2D-NMR studies, which identified a chemical shift perturbation of the Tyr110 backbone amide resonance of more than 0.05 p.p.m. upon the addition of 2 mM fragment 1 and of more than 0.04 p.p.m. upon the addition of 1 mM fragment 2. Although binding was detected by both X-ray crystallography and NMR, the binding affinity (Kd) for both fragments was low (above 2 mM), suggesting weak interactions with BpsDsbA. This conclusion is also supported by the crystal structure models, which ascribe partial occupancy to the ligands in the cryptic binding pocket. Small fragments such as 1 and 2 are not expected to have a high energetic binding affinity due to their relatively small surface area and the few functional groups that are available for intermolecular interactions. However, their simplicity makes them ideal for functionalization and optimization. The identification of the binding sites of 1 and 2 to BpsDsbA could provide a starting point for the development of more potent novel antimicrobial compounds that target DsbA and bacterial virulence.
Collapse
Affiliation(s)
- Guillaume A. Petit
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, NSW 2006, Australia
| | - Róisín M. McMahon
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Stefan Nebl
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David H. Hilko
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Karyn L. Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Martin J. Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
- Vice-Chancellor’s Unit, University of Wollongong, Building 36, Wollongong, NSW 2522, Australia
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
3
|
Flynn AJ, Ford A, Maguire AR. Synthetic and mechanistic aspects of sulfonyl migrations. Org Biomol Chem 2020; 18:2549-2610. [DOI: 10.1039/c9ob02587a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sulfonyl migrations, frequently described as ‘unusual’ or ‘unexpected’, from the last 20 years, including 1,2-, 1,3-, 1,4-, 1,5-, 1,6- and 1,7-sulfonyl shifts, through either radical or polar processes, either inter- or intramolecularly are reviewed.
Collapse
Affiliation(s)
- Aaran J. Flynn
- School of Chemistry
- Analytical and Biological Research Facility
- Synthesis and Solid State Pharmaceutical Centre
- University College Cork
- Cork
| | - Alan Ford
- School of Chemistry
- Analytical and Biological Research Facility
- University College Cork
- Cork
- Ireland
| | - Anita R. Maguire
- School of Chemistry and School of Pharmacy
- Analytical and Biological Research Facility
- Synthesis and Solid State Pharmaceutical Centre
- University College Cork
- Cork
| |
Collapse
|