1
|
Lenne Q, Mattiuzzi A, Jabin I, Troian-Gautier L, Hamon J, Leroux YR, Lagrost C. Chemical Surface Grafting of Pt Nanocatalysts for Reconciling Methanol Tolerance with Methanol Oxidation Activity. CHEMSUSCHEM 2023; 16:e202201990. [PMID: 36752278 DOI: 10.1002/cssc.202201990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
A conceptual challenge toward more versatile direct methanol fuel cells (DMFCs) is the design of a single material electrocatalyst with high activity and durability for both oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). This requires to conciliate methanol tolerance not to hinder ORR at the cathode with a good MOR activity at the anode. This is especially incompatible with Pt materials. We tackled this challenge by deriving a supramolecular concept where surface-grafted molecular ligands regulate the Pt-catalyst reactivity. ORR and MOR activities of newly reported Pt-calix[4]arenes nanocatalysts (Pt CF 3 ${{_{{\rm CF}{_{3}}}}}$ NPs/C) are compared to commercial benchmark PtNPs/C. Pt CF 3 ${{_{{\rm CF}{_{3}}}}}$ NPs/C exhibit a remarkable methanol tolerance without losing the MOR reactivity along with outstanding durability and chemical stability. Beyond designing single-catalyst material, operable in DMFC cathodic and anodic compartments, the results highlight a promising strategy for tuning interfacial properties.
Collapse
Affiliation(s)
- Quentin Lenne
- ISCR-UMR 6226, Univ Rennes, Campus de Beaulieu, 35000, Rennes, France
| | | | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles, CP 160/06, avenue F.D. Roosevelt 50, 1050, Brussels, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique, Université libre de Bruxelles, CP 160/06, avenue F.D. Roosevelt 50, 1050, Brussels, Belgium
- Institut de la Matière Condensée et des Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Jonathan Hamon
- Institut des Matériaux de Nantes_UMR 6502, Université de Nantes, 2 rue de la Houssinière, 44000, Nantes, France
| | - Yann R Leroux
- ISCR-UMR 6226, Univ Rennes, Campus de Beaulieu, 35000, Rennes, France
| | - Corinne Lagrost
- ISCR-UMR 6226, Univ Rennes, Campus de Beaulieu, 35000, Rennes, France
| |
Collapse
|
2
|
Quaglio D, Polli F, Del Plato C, Cianfoni G, Tortora C, Mazzei F, Botta B, Calcaterra A, Ghirga F. Calixarene: a versatile scaffold for the development of highly sensitive biosensors. Supramol Chem 2021. [DOI: 10.1080/10610278.2021.2011283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Polli
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Cristina Del Plato
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Gabriele Cianfoni
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science@Sapienza, Italian Institute of Technology, Rome, Italy
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Franco Mazzei
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Sapienza - University of Rome, Rome, Italy
| |
Collapse
|
3
|
Bauer D, Stipurin S, Köckerling M, Mamat C. Formation of calix[4]arenes with acyloxycarboxylate functions. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Mattiuzzi A, Troian-Gautier L, Mertens J, Reniers F, Bergamini JF, Lenne Q, Lagrost C, Jabin I. Robust hydrophobic gold, glass and polypropylene surfaces obtained through a nanometric covalently bound organic layer. RSC Adv 2020; 10:13553-13561. [PMID: 35492995 PMCID: PMC9051540 DOI: 10.1039/d0ra01011a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/25/2020] [Indexed: 01/26/2023] Open
Abstract
The (electro)chemical grafting of a polyfluorinated calix[4]arene on gold, polypropylene and glass is reported. The modified surfaces were characterized by ellipsometry, atomic force microscopy (AFM), and by X-ray photoelectron spectroscopy (XPS). A nanometric, robust and uniform monolayer of covalently surface-bound calix[4]arenes was obtained on the three different materials. For all surfaces, contact angles higher than 110° were recorded, highlighting the hydrophobic character given by this ∼2 nm thin organic monolayer. Remarkably, the contact angle values remained unchanged after 18 months under a laboratory atmosphere. The results presented herein thus present an attractive and sustainable strategy for bringing hydrophobic properties to the interface of a wide range of materials. The grafting of a polyfluorinated calix[4]arene-tetradiazonium derivative on various surfaces led to the formation of very robust and stable hydrophobic monolayers.![]()
Collapse
Affiliation(s)
- Alice Mattiuzzi
- X4C 128 Rue du Chêne Bonnet 6110 Montigny-le-Tilleul Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) CP 160/06, 50 Avenue F. D. Roosevelt 1050 Brussels Belgium
| | - Jérémy Mertens
- Chemistry of Surfaces, Interfaces and Nanomaterials - ChemSIN, Université libre de Bruxelles (ULB) CP 255, Campus de la Plaine, Boulevard du Triomphe 1050 Brussels Belgium
| | - François Reniers
- Chemistry of Surfaces, Interfaces and Nanomaterials - ChemSIN, Université libre de Bruxelles (ULB) CP 255, Campus de la Plaine, Boulevard du Triomphe 1050 Brussels Belgium
| | | | - Quentin Lenne
- Univ Rennes, CNRS, ISCR-UMR 6226 F-35000 Rennes France
| | | | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) CP 160/06, 50 Avenue F. D. Roosevelt 1050 Brussels Belgium
| |
Collapse
|
5
|
|
6
|
Gabaji M, Médard J, Hemmerle A, Pinson J, Michel JP. From Langmuir-Blodgett to Grafted Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2534-2542. [PMID: 32073872 DOI: 10.1021/acs.langmuir.9b03601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A locally organized monolayer film strongly attached to a gold surface is obtained by transfer of a Langmuir-Blodgett (LB) film of octadecylamine (ODA) or alcohol (ODOH) onto a Au surface and simultaneous oxidative electrografting of this film still in contact with the aqueous subphase. As opposed to LB films, these films resist ultrasonication; and unlike electrografted films, they are organized monolayers by construction. They are characterized by AFM (atomic force microscopy), water contact angle, ellipsometry, XPS (X-ray photoelectron spectroscopy), IRRAS (infrared reflection absorption spectroscopy), and GIXD (grazing incidence X-ray diffraction).
Collapse
Affiliation(s)
- M Gabaji
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296 Châtenay-Malabry, France
| | - J Médard
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - A Hemmerle
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif-sur-Yvette CEDEX, France
| | - J Pinson
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France
| | - J P Michel
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296 Châtenay-Malabry, France
| |
Collapse
|
7
|
Troian-Gautier L, Mattiuzzi A, Reinaud O, Lagrost C, Jabin I. Use of calixarenes bearing diazonium groups for the development of robust monolayers with unique tailored properties. Org Biomol Chem 2020; 18:3624-3637. [DOI: 10.1039/d0ob00070a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Calixarene-based diazonium salts can be easily synthesized in a few steps. This review surveys recent examples that illustrate the key advantages of these highly reactive molecular platforms for surface modification.
Collapse
Affiliation(s)
| | - Alice Mattiuzzi
- Laboratoire de Chimie Organique
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
- X4C
| | - Olivia Reinaud
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques
- CNRS UMR 8601
- Université de Paris
- 75006 Paris
- France
| | | | - Ivan Jabin
- Laboratoire de Chimie Organique
- Université libre de Bruxelles (ULB)
- 1050 Brussels
- Belgium
| |
Collapse
|
8
|
Jurisch CD, Arnott GE. Attempted synthesis of a meta-metalated calix[4]arene. Beilstein J Org Chem 2019; 15:1996-2002. [PMID: 31501666 PMCID: PMC6719732 DOI: 10.3762/bjoc.15.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/12/2019] [Indexed: 11/23/2022] Open
Abstract
An evidence for the formation of a rare meta-metalated inherently chiral calix[4]arene is described. Our strategy involved using a mesoionic carbene to direct C–H activation, but proved to form an unexpectedly unstable intermediate that was identified through high-resolution mass spectrometry. On route to our target, a new optimized method to mononitrocalix[4]arenes was developed, including optimized and high yielding transformations to azide and 1,2,3-triazole derivatives which may have application in other areas of research.
Collapse
Affiliation(s)
- Christopher D Jurisch
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gareth E Arnott
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|