1
|
Li B, Wen W, Wen W, Guo H, Fu C, Zhang Y, Zhu L. Application of Chitosan/Poly(vinyl alcohol) Stabilized Copper Film Materials for the Borylation of α, β-Unsaturated Ketones, Morita-Baylis-Hillman Alcohols and Esters in Aqueous Phase. Molecules 2023; 28:5609. [PMID: 37513482 PMCID: PMC10386186 DOI: 10.3390/molecules28145609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
A chitosan/poly(vinyl alcohol)-stabilized copper nanoparticle (CP@Cu NPs) was used as a heterogeneous catalyst for the borylation of α, β-unsaturated ketones, MBH alcohols, and MBH esters in mild conditions. This catalyst not only demonstrated remarkable efficiency in synthesizing organoboron compounds but also still maintained excellent reactivity and stability even after seven recycled uses of the catalyst. This methodology provides a gentle and efficient approach to synthesize the organoboron compounds by efficiently constructing carbon-boron bonds.
Collapse
Affiliation(s)
- Bojie Li
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Wu Wen
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wei Wen
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Haifeng Guo
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chengpeng Fu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yaoyao Zhang
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Brahmachari G, Bhowmick A, Karmakar I. Catalyst- and Additive-Free C(sp 3)-H Functionalization of (Thio)barbituric Acids via C-5 Dehydrogenative Aza-Coupling Under Ambient Conditions. ACS OMEGA 2022; 7:30051-30063. [PMID: 36061699 PMCID: PMC9434791 DOI: 10.1021/acsomega.2c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A one-pot room-temperature-based three-component reaction strategy has been accomplished to access a new series of bio-relevant barbituric/2-thiobarbituric acid hydrazones from the reaction between barbituric/2-thiobarbituric acids, primary aromatic amines, and tert-butyl nitrite in an acetonitrile solvent, without the aid of any catalysts/additives. The ambient reaction conditions can efficiently implement the C(sp3)-H functionalization of barbituric/2-thiobarbituric acids via C-5 dehydrogenative aza-coupling. The process does not require column chromatographic purification; pure products are obtained by simple filtration of the resulting reaction mixture, followed by washing the crude residue with distilled water. The catalyst-free ambient reaction conditions, operational simplicity, broad substrate scope and tolerance for various functional groups, no need for chromatographic purification, good to excellent yields of products within reasonable reaction times in minutes, clean reaction profile, and gram-scale synthetic applicability make this procedure attractive, green, and cost-effective.
Collapse
|
3
|
Recent Strategies in Transition-Metal-Catalyzed Sequential C–H Activation/Annulation for One-Step Construction of Functionalized Indazole Derivatives. Molecules 2022; 27:molecules27154942. [PMID: 35956893 PMCID: PMC9370621 DOI: 10.3390/molecules27154942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Designing new synthetic strategies for indazoles is a prominent topic in contemporary research. The transition-metal-catalyzed C–H activation/annulation sequence has arisen as a favorable tool to construct functionalized indazole derivatives with improved tolerance in medicinal applications, functional flexibility, and structural complexity. In the current review article, we aim to outline and summarize the most common synthetic protocols to use in the synthesis of target indazoles via a transition-metal-catalyzed C–H activation/annulation sequence for the one-step synthesis of functionalized indazole derivatives. We categorized the text according to the metal salts used in the reactions. Some metal salts were used as catalysts, and others may have been used as oxidants and/or for the activation of precatalysts. The roles of some metal salts in the corresponding reaction mechanisms have not been identified. It can be expected that the current synopsis will provide accessible practical guidance to colleagues interested in the subject.
Collapse
|
4
|
Okamoto Y, Kishikawa N, Hagimori M, El-Maghrabey M, Kawakami S, Kuroda N. A turn-on hydrazide oxidative decomposition-based fluorescence probe for highly selective detection of Cu2+ in tap water as well as cell imaging. Anal Chim Acta 2022; 1217:340024. [DOI: 10.1016/j.aca.2022.340024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 01/31/2023]
|
5
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
6
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Beesu M, Mehta G. “Back‐to‐Front” Type Synthesis of Polyfunctionalized Indazoles: Nitromethane Mediated, Domino Benzannulation of o‐Chloropyrazolyl Ynones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mallesh Beesu
- School of Chemistry University of Hyderabad Hyderabad 500 046 India
| | - Goverdhan Mehta
- School of Chemistry University of Hyderabad Hyderabad 500 046 India
| |
Collapse
|
8
|
Abstract
Sustainable transformations towards the production of valuable chemicals constantly attract interest, both in terms of academic and applied research. C–H activation has long been scrutinized in this regard, given that it offers a straightforward pathway to prepare compounds of great significance. In this context, directing groups (DG) have paved the way for chemical transformations that had not been achievable using traditional reactions. Few steps, high yields, selectivity and activation of inert substrates are some of the invaluable assets of directed catalysis. Additionally, the employment of traceless directing groups (TDG) greatly improves and simplifies this strategy, enabling the realization of multi-step reactions in one-pot, cascade procedures. Cheap, abundant, readily available transition metal salts and complexes can catalyze a plethora of reactions employing TDGs, usually under low catalyst loadings—rarely under stoichiometric amounts, leading in greater atom economy and milder conditions with increased yields and step-economy. This review article summarizes all the work done on TDG-assisted catalysis with manganese, iron, cobalt, nickel, or copper catalysts, and discusses the structure-activity relationships observed, by presenting the catalytic pathways and range of transformations reported thus far.
Collapse
|
9
|
Park A, Jeong KS, Lee H, Kim H. Synthesis of 1 H-Indazoles via Silver(I)-Mediated Intramolecular Oxidative C-H Bond Amination. ACS OMEGA 2021; 6:6498-6508. [PMID: 33718741 PMCID: PMC7948442 DOI: 10.1021/acsomega.1c00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
We described a silver(I)-mediated intramolecular oxidative C-H amination that enables the construction of assorted 1H-indazoles that are widely applicable in medicinal chemistry. The developed amination was found to be efficient for the synthesis of a variety of 3-substituted indazoles that are otherwise difficult to be synthesized by other means of C-H aminations. Preliminary mechanistic studies suggested that the current amination proceeds via single electron transfer (SET) mediated by Ag(I) oxidant.
Collapse
Affiliation(s)
- Areum Park
- Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Department
of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department
of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyuk Lee
- Korea
Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Graduate
School of New Drug Discovery and Development, Chungnam University, 99 Daehakro, Yuseong, Daejeon 34134, Republic of Korea
| | - Hyunwoo Kim
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Arita M, Yokoyama S, Asahara H, Nishiwaki N. Three Step Synthesis of Fully and Differently Arylated Pyridines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mao Arita
- School of Environmental Science and Engineering; Kochi University of Technology; Tosayamada 782-8502 Kami Kochi Japan
| | - Soichi Yokoyama
- School of Environmental Science and Engineering; Kochi University of Technology; Tosayamada 782-8502 Kami Kochi Japan
- Research Center for Material Science and Engineering; Kochi University of Technology; Tosayamada 782-8502 Kami Kochi Japan
| | - Haruyasu Asahara
- School of Environmental Science and Engineering; Kochi University of Technology; Tosayamada 782-8502 Kami Kochi Japan
- Research Center for Material Science and Engineering; Kochi University of Technology; Tosayamada 782-8502 Kami Kochi Japan
- Graduate School of Pharmaceutical Sciences; Osaka University; Yamadaoka 1-6, Suita 565-0871 Osaka Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering; Kochi University of Technology; Tosayamada 782-8502 Kami Kochi Japan
- Research Center for Material Science and Engineering; Kochi University of Technology; Tosayamada 782-8502 Kami Kochi Japan
| |
Collapse
|