1
|
Yang JS, Wang XY, Li YY, Zhang FM, Zhang XM, Tu YQ. Catalytic Asymmetric 1,4-Hydrocarbonation of 1,3-Enynes via Photoredox/Cobalt/Chromium Triple Catalysis. Angew Chem Int Ed Engl 2025; 64:e202420563. [PMID: 39797407 DOI: 10.1002/anie.202420563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
A synergistic photoredox/cobalt/chromium triple catalysis system for regioselective, enantioselective, and diastereoselective 1,4-hydrocarbonation of readily available 1,3-enyne precursors was explored, providing a modular synthetic platform for various trisubstituted axially chiral allenes bearing an extra central chirality. The protocol features a broad substrate scope, good functional group tolerance, excellent selectivity, and mild reaction conditions. Furthermore, a possible reaction mechanism is proposed based on numerous control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Ju-Song Yang
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240, China
| | - Xing-Yu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Yao Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yong-Qiang Tu
- School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Tian J, Li X, Shou T, Li W, Lv H. Enantioselective Synthesis of 3-Hydroxy-2-Oxindoles via Ni-Catalyzed Asymmetric Addition of Aromatic Bromides to α-Ketoamides. Chemistry 2024; 30:e202403622. [PMID: 39403858 DOI: 10.1002/chem.202403622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Indexed: 11/09/2024]
Abstract
Nickel-catalyzed asymmetric intramolecular addition of aryl halides to α-ketoamides has been achieved to afford chiral 3-substituted-3-hydroxy-2-oxindoles in excellent yields and high enantioselectivities (up to 99 % yield and 98 % ee), which provides efficient access to valuable molecules containing 3-hydroxy-2-oxindole core. The gram-scale reaction proved the potential utility of the methodology.
Collapse
Affiliation(s)
- Jiangyan Tian
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuening Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Shou
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wendian Li
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Lv
- State Key Laboratory of Power Grid Environmental Protection, Wuhan University, Wuhan, 430072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Hu L, Le Blanc Lele Fosso J, Guillot R, Mellah M, Schulz E. Electrochemical Enantioselective Nickel-Catalyzed Cross-Coupling of Aldehydes with Aryl Iodides. Chemistry 2024; 30:e202403432. [PMID: 39365835 DOI: 10.1002/chem.202403432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
The preparation of enantioenriched diarylmethanol derivatives is described using nickel-catalyzed electrochemical cross-couplings between various alkyl/aryl aldehydes and aryl iodides. Performed in an electrochemical cell equipped with an iron anode and a nickel cathode, this electrocatalytic variant led to the scalemic targeted products in the presence of 2,2-bis((4 R,5S)-4,5-diphenyl-4,5-dihydrooxazol-2-yl)acetonitrile (L2), as enantiopure cyano-bis(oxazoline) ligand. X-ray structure analysis of a pre-catalyst, for instance the [Ni(II)(L2)2] complex, with L2 as an anionic bisoxazolinate ligand, confirms the chemical formulation of one nickel surrounded by two ligands. The redox behavior of the new Ni complexes generated in situ was first assessed by cyclic voltammetry showing a redox wave at ca. -1.5 V that can be assigned to the two-electron reduction of the Ni(II) center to the Ni(0) state. Oxidative addition between the electrogenerated Ni(0) complex and aryl iodide was evidenced. An intense current was observed in presence of a mixture of the two substrates pertaining an electrocatalytic process. Interestingly, we found that the sacrificial iron anode plays a crucial role in the catalytic mechanism.
Collapse
Affiliation(s)
- Liangjian Hu
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Jospin Le Blanc Lele Fosso
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Régis Guillot
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Mohamed Mellah
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Emmanuelle Schulz
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| |
Collapse
|
4
|
Wen S, Bu J, Shen K. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Coupling To Access Chiral Secondary Benzylic Alcohols. J Org Chem 2024; 89:16134-16144. [PMID: 38327084 DOI: 10.1021/acs.joc.3c02293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Transition-metal-catalyzed asymmetric cross-coupling represents a powerful strategy for C-C bond formation and the synthesis of enantiomerically pure molecules. Here, we report a dual nickel/photoredox-catalyzed enantioselective reductive cross-coupling of aryl halides with α-bromobenzoates, readily generated from aliphatic aldehydes, to provide diverse chiral secondary benzylic alcohols that are important motifs in bioactive natural products and pharmaceuticals. This dual catalytic system features mild conditions, good functional group tolerance, broad substrate scope, excellent enantiocontrol, and avoidance of stoichiometric metal reductants, presenting great potential for late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Shun Wen
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Bu
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kun Shen
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Jiang M, Yu L, Zou C, Yuan H, Xu M, Chen B, Hu P, Wang BQ, Cao P. Nickel-Catalyzed Enantioselective Carbonyl Addition of Aryl Chlorides and Bromides to Aldehydes. Chemistry 2024; 30:e202401591. [PMID: 38844428 DOI: 10.1002/chem.202401591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 07/31/2024]
Abstract
The Ni-catalyzed enantioselective addition reaction of aryl halides to aldehydes was studied with cyanobis(oxazoline) as chiral ligands and Mn as reductant. Aryl and heteroaryl bromides reacted with phenyl aldehyde at room temperature to produce dibenzyl alcohols in 16-99 % yields with 53-92 % ees. Moreover, the coupling of phenyl chloride with a variety of aryl, heteroaryl and alkyl aldehydes was demonstrated in the presence of cyanobis(oxazoline)/Ni(II) at 60 °C in generally high yields with moderate enantioselectivities.
Collapse
Affiliation(s)
- Mingjie Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Limei Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Chenhui Zou
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Hao Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Minghui Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| |
Collapse
|
6
|
Zarei H, Sobhani S, Sansano JM. First Reusable Catalyst for the Reductive Coupling Reaction of Organohalides with Aldehydes. ACS OMEGA 2023; 8:36801-36814. [PMID: 37841197 PMCID: PMC10568700 DOI: 10.1021/acsomega.3c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
In this study, we simulate the reductive coupling (Barbier-Grignard-type) reaction of organohalides with aldehydes using a new reusable catalyst. In this regard, bimetallic alloys of NiCo encapsulated in melamine-based dendrimers (MBD) immobilized on magnetic nanoparticles symbolized as γ-Fe2O3-MBD/NiCo were designed and synthesized. The structure and properties of the catalyst were studied by a variety of techniques such as Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy-dispersive spectrometry (EDS) mapping, and inductively coupled plasma (ICP). The presence of NiCo nanoalloys was confirmed by XRD and XPS analysis, TEM images, and EDS mapping. Various secondary alcohols were produced in good to high yields by reductive coupling of different types of aldehydes and organohalides in the presence of HCO2K as a nonmetallic reducing agent in aqueous media catalyzed by γ-Fe2O3-MBD/NiCo. In these reactions, the high catalytic performance of γ-Fe2O3-MBD/NiCo was achieved in comparison to monometallic counterparts due to the synergistic cooperative effect of Co and Ni in the NiCo nanoalloys. Magnetic and hydrophilic properties of the catalyst facilitate the catalyst recyclability for seven runs. The reusability of γ-Fe2O3-MBD/NiCo, use of water as an environmentally friendly solvent, ease of processing, and absence of metal additives make this process an excellent choice for the reductive coupling reaction to produce secondary alcohols from aldehydes. This is the first report on these kinds of reactions using a reusable catalyst.
Collapse
Affiliation(s)
- Hamed Zarei
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 414, Iran
| | - Sara Sobhani
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 414, Iran
| | - José Miguel Sansano
- Departamento
de Química Orgánica, Facultad de Ciencias, Centro de
Innovación en Química Avanzada (ORFEOCINQA) and Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
7
|
Jiang X, Jiang H, Yang Q, Cheng Y, Lu LQ, Tunge JA, Xiao WJ. Photoassisted Cobalt-Catalyzed Asymmetric Reductive Grignard-Type Addition of Aryl Iodides. J Am Chem Soc 2022; 144:8347-8354. [PMID: 35481388 DOI: 10.1021/jacs.2c02481] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Grignard addition is one of the most important methods used for syntheses of alcohol compounds and has been known for over a hundred years. However, research on asymmetric catalysis relies on the use of organometallic nucleophiles. Here, we report the first visible-light-induced cobalt-catalyzed asymmetric reductive Grignard-type addition for synthesizing chiral benzyl alcohols (>50 examples, up to 99% yield, and 99% ee). This methodology has the advantages of mild reaction conditions, good functionality tolerance, excellent enantiocontrol, the avoidance of mass metal wastes, and the use of precious metal catalysts. Kinetic realization studies suggested that migratory insertion of an aryl cobalt species into the aldehyde was the rate-determining step of the reductive addition reaction.
Collapse
Affiliation(s)
- Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hao Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Qian Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
8
|
Zhang S, Perveen S, Ouyang Y, Xu L, Yu T, Zhao M, Wang L, Song P, Li P. Design and Synthesis of Tunable Chiral 2,2'-Bipyridine Ligands: Application to the Enantioselective Nickel-Catalyzed Reductive Arylation of Aldehydes. Angew Chem Int Ed Engl 2022; 61:e202117843. [PMID: 35174597 DOI: 10.1002/anie.202117843] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/11/2022]
Abstract
A new class of chiral 2,2'-bipyridine ligands, SBpy, featuring minimized short-range steric hindrance and structural tunability was rationally designed and developed, and the effectiveness was demonstrated in the first highly enantioselective Ni-catalyzed addition of aryl halides to aldehydes. In comparison with known approaches using preformed aryl metallic reagents, this reaction is more step-economical and functional group tolerant. The reaction mechanism and a model of stereocontrol were proposed based on experimental and computational results.
Collapse
Affiliation(s)
- Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Saima Perveen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Min Zhao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Peidong Song
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Zhu Z, Xiao J, Li M, Shi Z. Nickel-Catalyzed Intermolecular Asymmetric Addition of Aryl Iodides across Aldehydes. Angew Chem Int Ed Engl 2022; 61:e202201370. [PMID: 35147282 DOI: 10.1002/anie.202201370] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/03/2023]
Abstract
Enantioenriched alcohols comprise much of the framework of organic molecules. Here, we first report that chiral nickel complexes can catalyze the intermolecular enantioselective addition of aryl iodides across aldehydes to provide diverse optically active secondary alcohols using zinc metal as the reducing agent. This method shows a broad substrate scope under mild reaction conditions and precludes the traditional strategy through the pre-generation of organometallic reagents. Mechanistic studies indicate that an in situ formed arylnickel, instead of an arylzinc, adds efficiently to aldehydes, forming a new C-C bond and a chiral nickel alkoxide that may be turned over by zinc powder.
Collapse
Affiliation(s)
- Ziqi Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jieshuai Xiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mingjie Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Zhang S, Perveen S, Ouyang Y, Xu L, Yu T, Zhao M, Wang L, Song P, Li P. Design and Synthesis of Tunable Chiral 2,2′‐Bipyridine Ligands: Application to the Enantioselective Nickel‐Catalyzed Reductive Arylation of Aldehydes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuai Zhang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Saima Perveen
- School of Chemistry Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi 832003 China
| | - Tao Yu
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Min Zhao
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Linghua Wang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Peidong Song
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Pengfei Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
11
|
Zhu Z, Xiao J, Li M, Shi Z. Nickel‐Catalyzed Intermolecular Asymmetric Addition of Aryl Iodides across Aldehydes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ziqi Zhu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jieshuai Xiao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Mingjie Li
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Zhuangzhi Shi
- Nanjing University 南京大学 School of Chemistry & Chemical Engineering 163 Xianlin Avenue栖霞区仙林大道163号南京大学化学化工学院 210046 Nanjing CHINA
| |
Collapse
|
12
|
Isbrandt ES, Nasim A, Zhao K, Newman SG. Catalytic Aldehyde and Alcohol Arylation Reactions Facilitated by a 1,5-Diaza-3,7-diphosphacyclooctane Ligand. J Am Chem Soc 2021; 143:14646-14656. [PMID: 34478276 DOI: 10.1021/jacs.1c05661] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a catalytic method to access secondary alcohols by the coupling of aryl iodides. Either aldehydes or alcohols can be used as reaction partners, making the transformation reductive or redox-neutral, respectively. The reaction is mediated by a Ni catalyst and a 1,5-diaza-3,7-diphosphacyclooctane. This P2N2 ligand, which has previously been unrecognized in cross-coupling and related reactions, was found to avoid deleterious aryl halide reduction pathways that dominate with more traditional phosphines and NHCs. An interrupted carbonyl-Heck type mechanism is proposed to be operative, with a key 1,2-insertion step forging the new C-C bond and forming a nickel alkoxide that may be turned over by an alcohol reductant. The same catalyst was also found to enable synthesis of ketone products from either aldehydes or alcohols, demonstrating control over the oxidation state of both the starting materials and products.
Collapse
Affiliation(s)
- Eric S Isbrandt
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Amrah Nasim
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Karen Zhao
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
13
|
Buono F, Nguyen T, Qu B, Wu H, Haddad N. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
14
|
Yamaguchi E, Itoh A, Suzuki H. Nickel-Catalyzed Reductive Allylation of Aldehydes with Allyl Acetates. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1705961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractCarbonyl allylation reactions constitute an important step in the formation of carbon–carbon reactions, and involve various related reactions that chiefly use allylmetal reagents. This report presents a nickel-catalyzed carbonyl allylation reaction using allyl acetate, which produces homoallyl alcohols in moderate to good yields, as an efficient methodology under reductive coupling conditions.
Collapse
|
15
|
Zheng YL, Newman SG. Cross-coupling reactions with esters, aldehydes, and alcohols. Chem Commun (Camb) 2021; 57:2591-2604. [DOI: 10.1039/d0cc08389e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This feature article describes how diverse oxygen-containing functional groups such as esters, aldehydes, and alcohols can participate in cross-coupling reactions to prepare amides, ketones, alcohols, and beyond.
Collapse
Affiliation(s)
- Yan-Long Zheng
- Centre for Catalysis Research and Innovation
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
16
|
Weidmann N, Nishimura RHV, Knochel P, Harenberg JH. Halogen–Lithium Exchange of Sensitive (Hetero)aromatic Halides under Barbier Conditions in a Continuous Flow Set-Up. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractA halogen–lithium exchange reaction of (hetero)aromatic halides performed in the presence of various electrophiles such as aldehydes, ketones, Weinreb amides, and imines using BuLi as exchange reagent and a commercially available flow set-up is reported. The organolithiums generated in situ were instantaneously trapped with various electrophiles (Barbier conditions) resulting in the formation of polyfunctional (hetero)arenes. This method enables the functionalization of (hetero)arenes containing highly sensitive functional groups such as esters, which are not tolerated in batch conditions.
Collapse
Affiliation(s)
- Niels Weidmann
- Ludwig-Maximilians-Universität München, Department Chemie
| | | | - Paul Knochel
- Ludwig-Maximilians-Universität München, Department Chemie
| | | |
Collapse
|
17
|
Li Y, Li W, Tian J, Huang G, Lv H. Nickel-Catalyzed Asymmetric Addition of Aromatic Halides to Ketones: Highly Enantioselective Synthesis of Chiral 2,3-Dihydrobenzofurans Containing a Tertiary Alcohol. Org Lett 2020; 22:5353-5357. [PMID: 32573236 DOI: 10.1021/acs.orglett.0c01612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly enantioselective and straightforward synthetic procedure to chiral 3-hydroxy-2,3-dihydrobenzofurans has been developed by nickel/bisoxazoline-catalyzed intramolecular asymmetric addition of aryl halides to unactivated ketones, giving 2,3-dihydrobenzofurans with a chiral tertiary alcohol at the C-3 position in good yields and excellent enantioselectivities (up to 92% yield and 98% ee). The gram-scale reaction also proceeded smoothly without a loss of yield and enantioselectivity.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.,Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendian Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiangyan Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Guozheng Huang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Hui Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
18
|
Zhou P, XU T. Nickel-catalyzed intramolecular desymmetrization addition of aryl halides to 1,3-diketones. Chem Commun (Camb) 2020; 56:8194-8197. [DOI: 10.1039/d0cc00457j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A nickel-catalyzed intramolecular addition of aryl halides to 1,3-diketones was first developed to afford a polycyclic framework with two tetrasubstituted carbons in excellent diastereoselectivity. Moderate enantioselectivities were also achieved.
Collapse
Affiliation(s)
- Pan Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Tao XU
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|