1
|
Goto T, Blaukopf M, Stöger B, Pantophlet R, Kerner L, Kosma P. Glycosylation of an N-Acetylated Glucosamine Disaccharide Using an Orthogonally Protected 3-Iodo-Kdo Fluoride Donor. ChemistryOpen 2025:e2500141. [PMID: 40223430 DOI: 10.1002/open.202500141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Kdo (3-Deoxy-d-manno-oct-2-ulosonic acid) is an essential sugar found in bacterial lipopolysaccharides with significant biomedical relevance. This study introduces an orthogonally protected 3-iodo-Kdo fluoride donor and demonstrates its coupling to a pre-synthesized β-(1→6)-linked N-acetylglucosamine disaccharide acceptor as an example. Nuclear magnetic resonance data indicates the presence of an intraresidue hydrogen bond in the distal glucosamine unit. Two complementary glycosylation approaches are explored with an emphasis on achieving high stereoselectivity and minimizing protecting-group manipulation. The orthogonal protection of 3-iodo Kdo fluoride donor offers insights into tailoring Kdo-based donors for specific biomedical applications. While yields vary depending on the approach, they are sufficient to demonstrate the donor's applicability. These findings enable the design of advanced glycomimetic constructs for therapeutic and vaccine research.
Collapse
Affiliation(s)
- Takaaki Goto
- Institute of Organic Chemistry, University of Natural Resources and Life Sciences-Vienna, Muthgasse 18, A-1190, Vienna, Austria
| | - Markus Blaukopf
- Institute of Organic Chemistry, University of Natural Resources and Life Sciences-Vienna, Muthgasse 18, A-1190, Vienna, Austria
| | - Berthold Stöger
- X-Ray Center (XRC), University of Technology Vienna, Lehargasse 4, A-1060, Vienna, Austria
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A1S6, Canada
| | - Lukáš Kerner
- Institute of Organic Chemistry, University of Natural Resources and Life Sciences-Vienna, Muthgasse 18, A-1190, Vienna, Austria
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, SK, 842 15, Slovakia
| | - Paul Kosma
- Institute of Organic Chemistry, University of Natural Resources and Life Sciences-Vienna, Muthgasse 18, A-1190, Vienna, Austria
| |
Collapse
|
2
|
Abronina PI, Novikov DS, Malysheva NN, Zinin AI, Chizhov AO, Kononov LO. Stereocontrolled 1,2-trans-arabinofuranosylation in the absence of 2-O-acyl group in glycosyl donor. Carbohydr Res 2024; 544:109252. [PMID: 39217847 DOI: 10.1016/j.carres.2024.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Stereocontrolled 1,2-trans-α-arabinofuranosylation using polysilylated mono- and disaccharide glycosyl donors was investigated. A complete α-stereoselectivity of 1,2-trans-arabinofuranosylation was found for Ara-β-(1 → 2)-Ara disaccharide glycosyl donors containing five triisopropylsilyl (TIPS) groups with arylthiol (1) (as shown in our previous publications) or N-phenyltrifluoroacetimidoyl (2) (this work) leaving groups. Conversely, in case of monosaccharide thioglycosides polysilylated with acyclic silyl groups (TIPS, TBDPS), stereoselectivity of glycosylation was lower (α:β = 7-8:1), although the desired α-isomer still dominated. Disaccharide glycosyl donor 2 was successfully used in the synthesis of linear α-(1 → 5)-, β-(1 → 2)-linked hexaarabinofuranoside useful for further preparation of conjugates thereof as antigens valuable for the diagnosis of mycobacterioses.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| | - Dmitry S Novikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
3
|
Abronina PI, Malysheva NN, Zinin AI, Novikov DS, Panova MV, Kononov LO. Unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation. Carbohydr Res 2024; 540:109141. [PMID: 38740000 DOI: 10.1016/j.carres.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
We discovered an unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation of the primary hydroxy group of α-(1 → 5)-linked tetraarabinofuranoside bearing 4-(2-chloroethoxy)phenyl aglycone with α-(1 → 5), β-(1 → 2)-linked tetraarabinofuranoside containing N-phenyltrifluoroacetimidoyl leaving group, which led to octa-, dodeca- and hexadecaarabinofuranosides. The possible mechanism of triflic acid-promoted oligomerization was proposed. The choice of promoter was found to be a critical factor for the discovered oligomerization of arabinofuranosides. The obtained octa-, dodeca- and hexadecaarabinofuranosides may serve as useful blocks in the synthesis of oligosaccharide fragments of polysaccharides of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Dmitry S Novikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
4
|
Karpenko MY, Abronina PI, Zinin AI, Chizhov AO, Kononov LO. TIPS group-assisted isomerization of benzyl protected d-manno- and d-glucopyranose to d-fructofuranose derivatives. Carbohydr Res 2023; 534:108942. [PMID: 37769375 DOI: 10.1016/j.carres.2023.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Base-promoted (MeONa in MeOH or imidazole in DMF) isomerization of a series of 3,4,6-tri-O-benzyl-d-gluco- and d-mannopyranose derivatives with triisopropylsilyl (TIPS) substituents was studied. The presence of a bulky TIPS group at O-1 or O-2 was shown to be favorable for the isomerization of benzyl protected d-gluco- and d-mannopyranose derivatives to d-fructofuranose derivatives, in which the bulky silyl group occupies less sterically hindered primary position. The highest yield (33%) of the fructofuranose derivative was achieved when 3,4,6-tri-O-benzyl-2-O-triisopropylsilyl-d-mannopyranose was treated with MeONa in MeON at 50 °C.
Collapse
Affiliation(s)
- Maxim Y Karpenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation.
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
5
|
de Paz JL, García-Jiménez MJ, Jafari V, García-Domínguez M, Nieto PM. Synthesis and interaction with growth factors of sulfated oligosaccharides containing an anomeric fluorinated tail. Bioorg Chem 2023; 141:106929. [PMID: 37879181 DOI: 10.1016/j.bioorg.2023.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Compounds that mimic the biological properties of glycosaminoglycans (GAGs) and can be more easily prepared than the native GAG oligosaccharides are highly demanded. Here, we present the synthesis of sulfated oligosaccharides displaying a perfluorinated aliphatic tag at the reducing end as GAG mimetics. The preparation of these molecules was greatly facilitated by the presence of the fluorinated tail since the reaction intermediates were isolated by simple fluorous solid-phase extraction. Fluorescence polarization competition assays indicated that the synthesized oligosaccharides interacted with two heparin-binding growth factors, midkine (MK) and FGF-2, showing higher binding affinities than the natural oligosaccharides, and can be therefore considered as useful GAG mimetics. Moreover, NMR experiments showed that the 3D structure of these compounds is similar to that of the native sequences, in terms of sugar ring and glycosidic linkage conformations. Finally, we also demonstrated that these derivatives are able to block the MK-stimulating effect on NIH3T3 cells growth.
Collapse
Affiliation(s)
- José L de Paz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| | - María José García-Jiménez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain
| | - Vahid Jafari
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Américo Vespucio, 24, 41092 Sevilla, Spain
| | - Mario García-Domínguez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Américo Vespucio, 24, 41092 Sevilla, Spain
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
6
|
Synthesis of selectively protected α-(1→3)- and α-(1→5)-linked octasaccharide moiety bearing a Janus aglycone, related to the branching site of mycobacterial polysaccharides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
7
|
Abronina PI, Podvalnyy NM, Kononov LO. The use of silyl groups in the synthesis of arabinofuranosides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Myachin IV, Mamirgova ZZ, Stepanova EV, Zinin AI, Chizhov AO, Kononov L. Black swan in phase transfer catalysis: influence of mixing mode on the stereoselectivity of glycosylation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya V. Myachin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Zarina Z. Mamirgova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Elena V. Stepanova
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboraory of Glycochemistry RUSSIAN FEDERATION
| | - Alexander I. Zinin
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Alexander O. Chizhov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Glycochemistry RUSSIAN FEDERATION
| | - Leonid Kononov
- N.D. Zelinsky Institute of Organic Chemistry Laboratory of Glycochemistry Leninsky prosp., 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
9
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|